scispace - formally typeset
Search or ask a question
Author

Yury Gogotsi

Other affiliations: Qatar Airways, Clemson University, Qatar Foundation  ...read more
Bio: Yury Gogotsi is an academic researcher from Drexel University. The author has contributed to research in topics: MXenes & Carbon. The author has an hindex of 171, co-authored 956 publications receiving 144520 citations. Previous affiliations of Yury Gogotsi include Qatar Airways & Clemson University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a microindentation device was designed and fabricated to study pressure-induced phase transformations in real-time using a light microscope and a Raman microspectrometer.
Abstract: In situ microscopic and spectroscopic studies of samples allow us to understand the mechanisms and measure kinetics of phase transformations in materials. We use a light microscope and a Raman microspectrometer to study phase transformations induced by contact loading. Many interesting phenomena occur in materials during indentation that can only be analyzed during indentation, in situ. By analyzing what occurs to ceramics and semiconductors in situ we can gain valuable insight into the mechanisms and kinetics of phase transformation. A microindentation device has been designed and fabricated to achieve these objectives. The microindentation device can provide the means to study pressure-induced phase transformations in real time. The basic design of the device is adaptable to several configurations, so that the device may be used in a wide variety of applications. The device consists of a piezoelectric actuator (piezoelectric translator), load cell, linear microscrew stage, translation stage containing the specimen mount and specimen holder, and diamond-tip indenter. For the first time, an indentation tester has been coupled with a Raman microspectrometer to conduct in situ studies of pressure-induced phase transformations. This article describes the design, operation, and experimentation of a microindentation device for the in situ analysis of pressure-induced phase transformations in materials.

24 citations

Patent
06 Apr 2006
TL;DR: Carbon nanotubes filled with a suspension or colloidal solution of functional nanoparticles and methods for the production of carbon nanotube loaded with functional nano-articles are provided in this article.
Abstract: Carbon nanotubes filled with a suspension or colloidal solution of functional nanoparticles and methods for production of carbon nanotubes loaded with functional nanoparticles are provided.

24 citations

Journal ArticleDOI
TL;DR: In this article, the effect of water on structural ceramics was discussed and it was shown that even the most stable and corrosion-resistant materials may interact with water and water may become a hostile environment.
Abstract: Environmental degradation poses a serious limitation on the utility of engineering materials such as metals, plastics, glasses, and structural ceramics. However, at least water would seem to be a harmless environment for ceramics, which are considered to be the most corrosion-resistant of all materials. When we drink water from a glass or a ceramic cup, we never think about an aqueous alteration of these materials. We cannot imagine that our ceramic mug may be dissolved in water or fail due to stress corrosion during breakfast. Even hot water which we use to make coffee or tea does not seem to be a hazardous environment for our china and earthenware. Why then are we going to discuss the effect of water on structural ceramics? The answer is simple: Under conditions of normal use of structural ceramics, which include high temperatures, high pressures, and mechanical stresses (Figure 1), even the most stable and corrosion-resistant materials may interact with water and water may become a hostile environment. It can be adsorbed on the surface of ceramics and act as a solvent for oxide ceramics or as an oxidant for non-oxide ceramics (Figure 2). However, water can cause a degradation of glasses and oxide ceramics even at room temperature if mechanical stresses are simultaneously applied (so-called stress corrosion). Water or humid air can decrease significantly the mechanical properties of certain zirconia ceramics at only slightly elevated temperatures (~200°C).

24 citations

Journal ArticleDOI
TL;DR: Nanotube endoscope insertion is truly minimally invasive: it does not significantly modulate the plasma membrane and actin network; the energy production and inositol 1,4,5-trisphosphate-dependent calcium signaling also remain preserved during prolonged endoscope presence within a cell.

24 citations

Journal ArticleDOI
01 Jul 2013-Carbon
TL;DR: In this article, a floating catalyst chemical vapor deposition (FCCVD) with anhydrous ferric chloride as a catalyst precursor and melamine as both the carbon and nitrogen source was used to synthesize nitrogen-doped carbon microfibers.

24 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Abstract: Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

14,213 citations