scispace - formally typeset
Search or ask a question
Author

Yury Gogotsi

Other affiliations: Qatar Airways, Clemson University, Qatar Foundation  ...read more
Bio: Yury Gogotsi is an academic researcher from Drexel University. The author has contributed to research in topics: MXenes & Carbon. The author has an hindex of 171, co-authored 956 publications receiving 144520 citations. Previous affiliations of Yury Gogotsi include Qatar Airways & Clemson University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a 3-aminopropyltriethoxysilane precursor is used to stabilize a magnetic carbon nanotubes (CNT) composite through covalently bonding a silica coat, which creates a thin barrier protecting the α-haematite particles from pH solutions.

16 citations

Journal ArticleDOI
01 Dec 2005
TL;DR: Computational and experimental work on pattern formation in Drosophila egg development (oogenesis), an established experimental model for studying cell fate diversification in developing tissues, reveals large sets of heterogeneous data that enable the formulation of increasingly quantitative models of pattern formation.
Abstract: This paper describes computational and experimental work on pattern formation in Drosophila egg development (oogenesis), an established experimental model for studying cell fate diversification in developing tissues. Epidermal growth factor receptor (EGFR) is a key regulator of pattern formation and morphogenesis in Drosophila oogenesis. EGFR signalling in oogenesis can be genetically manipulated and monitored at many levels, leading to large sets of heterogeneous data that enable the formulation of increasingly quantitative models of pattern formation in these systems.

16 citations

Journal ArticleDOI
TL;DR: In this article, the authors used X-ray diffraction (XRD), Raman microspectroscopy, electron energy loss spectroscopy (EELS), scanning electron microscopy (SEM), and TEM to study the chemical composition, structure and morphology of β-SiC whiskers.
Abstract: Whiskers of β-SiC have been produced on the surfaces of polycrystalline SiC fibres by carbothermal synthesis The growth of whiskers occurred simultaneously with siliconisation of the carbon fibres The chemical composition, structure and morphology of the whiskers were studied using X-ray diffraction (XRD), Raman microspectroscopy, electron energy loss spectroscopy (EELS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) It was found that the presence of silica on the surface of initially carbonised fibres was essential for whiskerisation Nucleation and growth of the whiskers followed the vapour–liquid–solid (VLS) mechanism The diameter of the whiskers produced ranged from 100 to 300 nm and the average aspect ratio was about 300 Owing to the small size of the whiskers, they are expected to provide more efficient reinforcement in composites than conventional whiskers of larger diameter

16 citations

Journal ArticleDOI
TL;DR: A more environmentally friendly alternative acidic electrolyte, methanesulfonic acid (MSA CH3SO3H) is proposed and it exhibits excellent cycle stability with retention of nearly 100% over 10,000 cycles, and in-situ X-ray diffraction analysis reveals the intercalation charge storage mechanism.
Abstract: Two-dimensional transition metal carbides, nitrides, and carbonitrides, called MXenes, have gained much attention as electrode materials in electrochemical energy storage devices. In particular, Ti3 C2 Tx has shown outstanding performance in common sulfuric acid (H2 SO4 ) electrolyte. In this work, a more environmentally friendly alternative acidic electrolyte, methanesulfonic acid (MSA), is proposed. The energy storage performance of Ti3 C2 Tx in aqueous and neat MSA ionic liquid electrolytes is investigated. The specific capacitance of 298 F g-1 was obtained at a scan rate of 5 mV s-1 in 4 m MSA and it exhibits excellent cycle stability with retention of nearly 100 % over 10 000 cycles. This electrochemical performance is similar to that of Ti3 C2 Tx in H2 SO4 , but using a greener electrolyte. In situ X-ray diffraction analysis reveals the intercalation charge storage mechanism. Specifically, the interlayer spacing changes by up to 2.58 A during cycling, which is the largest reversible volume change observed in MXenes in aqueous electrolytes.

15 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Abstract: Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

14,213 citations