scispace - formally typeset
Search or ask a question
Author

Yury Gogotsi

Other affiliations: Qatar Airways, Clemson University, Qatar Foundation  ...read more
Bio: Yury Gogotsi is an academic researcher from Drexel University. The author has contributed to research in topics: MXenes & Carbon. The author has an hindex of 171, co-authored 956 publications receiving 144520 citations. Previous affiliations of Yury Gogotsi include Qatar Airways & Clemson University.


Papers
More filters
Journal ArticleDOI
TL;DR: A large number of vacancy V(n) clusters representing nanosized voids in diamonds for n up to 65 are generated and evaluated, providing an atomistic justification for the widely used "slit pore" model.
Abstract: Point defects and pores in diamond affect its optical and electrical properties. We generated and evaluated a large number of vacancy Vn clusters representing nanosized voids in diamonds for n up to 65. Our generational algorithm spawns the new generation n + 1 from the list of the most stable structures in the previous generation n. With energy as the only criterion, we generate a large structural diversity that allows their unbiased analysis. Since π-electron delocalization is important for carbon, we used quantum mechanical tight-binding density functional theory (TBDFT). Adamantane-like globular shapes are preferred for n up to ∼22. Beginning around n ≈ 35, the most stable structures show overall oblate shapes with some irregularities. These novel structures have not been seen before because hitherto only highly regular structures were considered. We see local graphitization in these relaxed structures providing an atomistic justification for the widely used “slit pore” model. The preference for structures with minimum number of cut bonds diminishes as n increases. There are no particularly stable “magic” sizes for vacancy clusters larger than n = 22 indicating that these larger voids can easily incorporate small vacancies and vacancy clusters. Radial distribution analysis shows that unusual contact or bond distances in the 1.6 to 2.8 A range appear in the vicinity of the internal surfaces of the vacancy clusters. Extremely long C–C bonds emerge as a result of structural relaxation of the dangling bonds in the vicinity of the vacancy clusters that cannot be simply described by ordinary sp2/sp3 hybridization.

13 citations

Journal ArticleDOI
TL;DR: In this article, the carrier dynamics at the heterostructures of metal-semiconductor (MSE) was studied to improve hot-electron injection efficiency and influence the photocatalytic performance.
Abstract: Metal–semiconductor heterostructures are believed to improve hot-electron injection efficiency and influence the photocatalytic performance. Understanding the carrier dynamics at the heterostructur...

13 citations

Journal ArticleDOI
TL;DR: In this article, a coarse-grained activated carbon (AC) was used to increase the areal capacitance of a supercapacitor to 7.4 cm2 at 5mV/s.

13 citations

Patent
28 Apr 2004
TL;DR: Boron-aluminum-nitride interface compositions and coatings for ceramic fibers used in ceramic matrix composites are provided in this article, and methods for production of boronnitride ceramic fibers are presented.
Abstract: Boron-aluminum-nitride interface compositions and coatings for ceramic fibers used in ceramic matrix composites are provided. Also provided are methods for production of boron-nitride ceramic fibers.

13 citations

Journal ArticleDOI
TL;DR: A rapid and highly selective adsorption-based separation of 18O2 from 16O2 with S above 60 is shown using nanoporous adsorbents operating near the boiling point of methane, which is accessible through cryogenic liquefied-natural-gas technology.
Abstract: Isotopes of heavier gases including carbon (13C/14C), nitrogen (13N), and oxygen (18O) are highly important because they can be substituted for naturally occurring atoms without significantly perturbing the biochemical properties of the radiolabelled parent molecules. These labelled molecules are employed in clinical radiopharmaceuticals, in studies of brain disease and as imaging probes for advanced medical imaging techniques such as positron-emission tomography (PET). Established distillation-based isotope gas separation methods have a separation factor (S) below 1.05 and incur very high operating costs due to high energy consumption and long processing times, highlighting the need for new separation technologies. Here, we show a rapid and highly selective adsorption-based separation of 18O2 from 16O2 with S above 60 using nanoporous adsorbents operating near the boiling point of methane (112 K), which is accessible through cryogenic liquefied-natural-gas technology. A collective-nuclear-quantum effect difference between the ordered 18O2 and 16O2 molecular assemblies confined in subnanometer pores can explain the observed equilibrium separation and is applicable to other isotopic gases. Separation of isotopes of heavier gases than hydrogen or helium is essential for biomedical applications, but current methods are very energy and time consuming. Here the authors report cryogenic separation of oxygen and methane isotopes through adsorption in nanoporous materials, based on a collective nuclear quantum effect.

13 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Abstract: Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

14,213 citations