scispace - formally typeset
Search or ask a question
Author

Yury Gogotsi

Other affiliations: Qatar Airways, Clemson University, Qatar Foundation  ...read more
Bio: Yury Gogotsi is an academic researcher from Drexel University. The author has contributed to research in topics: MXenes & Carbon. The author has an hindex of 171, co-authored 956 publications receiving 144520 citations. Previous affiliations of Yury Gogotsi include Qatar Airways & Clemson University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the effects of surface defects on the carbon structure and the SiC decomposition rate have been analyzed and shown that grain boundaries, dislocations, scratches, surface steps, and external surfaces may greatly enhance the reaction rate and affect the final structure of carbon derived from SiC.
Abstract: Epitaxial graphene and carbon nanotubes (CNTs) grown on SiC have shown big potential in electronics. The motivation to produce faster and smaller electronic devices using less power opened the way to a study of how to produce controlled epitaxial graphene and CNTs on SiC. Since defects are among the important tools to control the properties of materials, the effects of defects on the carbon formation on SiC have been analyzed. In this study, the effects of defects on the carbon formation on SiC have been analyzed. We produced carbon films on the surface of four different SiC materials (polycrystalline sintered SiC disks, single crystalline SiC wafers, SiC whiskers, and nanowhiskers) by chlorination and vacuum annealing with the goal to understand the effects of surface defects on the carbon structure and the SiC decomposition rate. We have shown that grain boundaries, dislocations, scratches, surface steps, and external surfaces may greatly enhance the reaction rate and affect the final structure of carbon derived from SiC.

5 citations

Journal ArticleDOI
TL;DR: In this paper, phase-pure, two-dimensional Nb4C3Tx (Tx: general surface termination) is synthesized by immersion of nb4AlC3 powder (obtained by in situ hot pressing of mixtures of the elements at 3 MPa and 1700 °C for 1 h) in 48-51% aqueous HF for 96 h at ambient temperature with stirring.
Abstract: Phase-pure, two-dimensional Nb4C3Tx (Tx: general surface termination) is synthesized by immersion of Nb4AlC3 powder (obtained by in situ hot pressing of mixtures of the elements at 3 MPa and 1700 °C for 1 h) in 48-51% aqueous HF for 96 h at ambient temperature with stirring (77% yield).

5 citations

01 Jan 2001
TL;DR: In this article, a closed-end multi-wall carbon nanotubes are used as a test platform for unique in-situ nanofluidic experiments in TEM.
Abstract: Closed-end multi-wall carbon nanotubes, which contain an encapsulated aqueous multi-phase fluidunder high pressure, have been produced by hydrothermal synthesis. These nanotubes are leak-tight by virtue of holding the fluid at the high vacuum of a transmission electron microscope (TEM) and can be used as a testplatform for unique in-situ nanofluidic experiments in TEM. They form an experimental apparatus, which is at least two orders of magnitude smaller than the smallest capillaries used in fluidic experiments so far. Excellent wettability of the carbon tube walls by the liquid and a dynamic behavior similar to that in micro-capillaries demonstrates the possibility of use of nanoscale (<100 nm) tubes in nanofluidic devices.However, complex interface behavior that can potentially create hurdles to fluid transport is also demonstratedherein.

5 citations

Journal ArticleDOI
TL;DR: It is demonstrated that a modification of the widely used protocol for the sodium citrate mediated reduction of chloroauric acid can yield flat polygonal nanoparticles at room temperature and a decreased amount of the reducing agent.
Abstract: We discuss the relationship between the shape of plasmonic nanoparticles and the biological surface-enhanced Raman spectroscopy (SERS) applications which they can enable. As a step forward in developing SERS-active substrates adapted to a particular application, we demonstrate that a modification of the widely used protocol for the sodium citrate mediated reduction of chloroauric acid, which is typically employed only for obtaining spherical gold nanoparticles, can yield flat polygonal nanoparticles at room temperature and a decreased amount of the reducing agent. The significant advantage of the described approach is that it allows for synthesis of nanoparticles with different geometries using a well-established synthesis protocol without the need for any additional chemicals or special synthesis apparatus. By contrasting spherical and anisotropically shaped nanoparticles, we demonstrate that multifaceted nanoparticles with sharp edges are better suitable for SERS analysis of low concentration analytes requiring strong SERS enhancement. On the other hand, gold nanoparticles with isotropic shapes, while giving a smaller enhancement, can provide a more reproducible SERS signal. This is important for analytical applications of complex biological systems where large SERS enhancement may not always be required, whereas data reproducibility and minimal false positive rate are imperative. Using a SERS-active substrate comprising isotropically shaped gold nanoparticles, we demonstrate the differences between Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria, attributable to the outer membrane and peptidoglycan layer, with the level of detail which has not been previously reported with optical spectroscopic techniques.

5 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Abstract: Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

14,213 citations