scispace - formally typeset
Search or ask a question
Author

Yury Gogotsi

Other affiliations: Qatar Airways, Clemson University, Qatar Foundation  ...read more
Bio: Yury Gogotsi is an academic researcher from Drexel University. The author has contributed to research in topics: MXenes & Carbon. The author has an hindex of 171, co-authored 956 publications receiving 144520 citations. Previous affiliations of Yury Gogotsi include Qatar Airways & Clemson University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors showed that the combination of an ultrathin transition metal carbide (MXene) film and a nano-metamaterial shows excellent shielding performance in the microwave regime.
Abstract: DOI: 10.1002/adom.201701076 THz electronics and devices.[12] Recently, nonlinear optical phenomena using high power THz sources[13] and THz plasmonics[14] have been intensively explored. However, electromagnetic interference (EMI) often generated from those THz devices must be shielded in order to protect device and its surroundings.[15] In general, electrically conductive materials, such as carbon and their composites, have been used and shown to have promising EMI shielding capabilities in the range of THz frequencies.[15] Recently, 2D transition metal carbide (MXene) has shown excellent shielding performance in the microwave regime.[16–19] Among all, a thin film of Ti3C2Tx MXenes (≈1.5 μm) can block 99.99% EM waves showing the highest EMI shielding efficiency (EMI SE) for materials of comparable thicknesses.[19] Han et al. reported a composite of Ti3C2Tx in wax which delivers an EMI SE value of 76.1 dB with a thickness of only 1 mm.[18] Qing et al. reported the microwave absorption properties of a Ti3C2Tx filled polymer composite, where a reflection loss value of −11 dB was recorded in Ku band for a 1.4 mm thick sample.[17] Han et al., in another report, developed laminated carbon/TiO2 structures derived from Ti3C2Tx MXenes Terahertz (THz) shielding becomes increasingly important with the growing development of THz electronics and devices. Primarily materials based on carbon nanostructures or polymer–carbon nanocomposites have been explored for this application. Herein, significantly enhanced THz shielding efficiencies for 2D titanium carbide (Ti3C2 MXene) thin films with nanoscale THz metamaterials are presented. Nanoscale slot antenna arrays with strong resonances at certain frequencies enhance THz electromagnetic waves up to three orders of magnitude in transmission, which in turn enormously increases the shielding performance in combination with MXene films. Drop-casting of a colloidal solution of MXene (a few micrograms of dry material) can produce an ultrathin film (several tens of nanometers in thickness) on a slot antenna array. Consequently, THz waves strongly localized in the near-field regime by the slot antenna undergo enhanced absorption through the film with a magnified effective refractive index. Finally, the combination of an ultrathin MXene film and a nano-metamaterial shows excellent shielding performance in the THz range.

131 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show how decoration of carbon onions with quinones provides a facile method to increase the energy density up to one order of magnitude, namely, from 0.5 Wh/kg to 4.5 WH/kg, while retaining a high power density and long lifetime.

131 citations

Journal ArticleDOI
01 Aug 2005-Carbon
TL;DR: In this article, the synthesis of nanoporous carbide-derived carbon, CDC, by extraction of titanium and silicon from Ti 3 SiC 2 by chlorine is discussed, and a Gibbs free energy minimization program provided general guidelines to the experimental design.

130 citations

Journal ArticleDOI
01 May 2008-Carbon
TL;DR: In this paper, a systematic study of the effects of SiC surface morphology and carbon transport through the gas phase leads to reproducible and controlled growth of arrays of small-diameter (1-4 walls) nanotubes, which show pronounced radial breathing modes in Raman spectra.

130 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Abstract: Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

14,213 citations