scispace - formally typeset
Search or ask a question
Author

Yury Gogotsi

Other affiliations: Qatar Airways, Clemson University, Qatar Foundation  ...read more
Bio: Yury Gogotsi is an academic researcher from Drexel University. The author has contributed to research in topics: MXenes & Carbon. The author has an hindex of 171, co-authored 956 publications receiving 144520 citations. Previous affiliations of Yury Gogotsi include Qatar Airways & Clemson University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a unified approach to the analysis of the edge reconstruction of graphite and growth of a variety of non-planar graphitic structures, such as nanotubes, is suggested.
Abstract: A unified approach to the analysis of the mechanisms that lead to the edge reconstruction of graphite and growth of a variety of non-planar graphitic structures, such as nanotubes, is suggested. Transmission electron microscopy (TEM) shows that nano-arches are formed on the edge planes of natural and synthetic graphite, as well as graphite polyhedral crystals, which are built of graphene sheets; this makes the edge reconstruction of graphite different from the surface reconstruction of other crystals. A theoretical study of edge zipping in graphite and formation of tubular carbon structures has been performed using an integrated approach combining molecular dynamics simulation and analytical continual energetics modeling. The suggested theoretical framework describes the formation of curved surfaces in a wide range of dimensions, which is a general feature of the growth of layered materials. Layered materials isostructural to graphite, such as hexagonal BN, demonstrate similar edge structures and also form nanotubes. Thus, the ability of materials to form arches as a result of edge reconstruction points out to their ability to form nanotubes and vice versa. TEM studies of graphite and hexagonal boron nitride provide experimental verification of our analytical model.

104 citations

Journal ArticleDOI
TL;DR: In this article, a "brick-and-mortar" approach was used to obtain ordered graphitic mesoporous carbon nanocomposites with tunable mesopore sizes below 850 °C without using graphitization catalysts or high temperature thermal treatments.
Abstract: Mesoporous carbon materials do not have sufficient ordering at the atomic scale to exhibit good electronic conductivity. To date, mesoporous carbons having uniform mesopores and high surface areas have been prepared from partially-graphitizable precursors in the presence of templates. High temperature thermal treatments above 2000 °C, which are usually required to increase conductivity, result in a partial or total collapse of the mesoporous structures and reduced surface areas induced by growth of graphitic domains, limiting their applications in electric double layer capacitors and lithium-ion batteries. In this work, we successfully implemented a “brick-and-mortar” approach to obtain ordered graphitic mesoporous carbon nanocomposites with tunable mesopore sizes below 850 °C without using graphitization catalysts or high temperature thermal treatments. Phenolic resin-based mesoporous carbons act as mortar to highly conductive carbon blacks and carbon onions (bricks). The capacitance and resistivity of final materials can be tailored by changing the mortar to brick ratios.

103 citations

Journal ArticleDOI
21 May 2018-Langmuir
TL;DR: It is proposed that the peptidoglycan mesh in the bacterial wall is likely the primary target of the 2D nanomaterials, and the edges of the nanosheets were likely compromising the cell walls upon contact.
Abstract: Two-dimensional (2D) nanomaterials have attracted considerable attention in biomedical and environmental applications due to their antimicrobial activity. In the interest of investigating the primary antimicrobial mode-of-action of 2D nanomaterials, we studied the antimicrobial properties of MnO2 and MoS2, toward Gram-positive and Gram-negative bacteria. Bacillus subtilis and Escherichia coli bacteria were treated individually with 100 μg/mL of randomly oriented and vertically aligned nanomaterials for ∼3 h in the dark. The vertically aligned 2D MnO2 and MoS2 were grown on 2D sheets of graphene oxide, reduced graphene oxide, and Ti3C2 MXene. Measurements to determine the viability of bacteria in the presence of the 2D nanomaterials performed by using two complementary techniques, flow cytometry, and fluorescence imaging showed that, while MnO2 and MoS2 nanosheets show different antibacterial activities, in both cases, Gram-positive bacteria show a higher loss in membrane integrity. Scanning electron micro...

103 citations

Journal ArticleDOI
TL;DR: It is shown that efficient stress transfer to nanotubes as monitored by Raman spectroscopy is crucial to improving the mechanical properties of polymer nanocomposites and to detecting internal damage in nanocomPOSites.
Abstract: The transfer mechanism of applied stress in single-wall carbon nanotube (SWCNT)/poly(methyl methacrylate) (PMMA) nanocomposites was investigated using in situ Raman spectroscopy on composite fibers. These SWCNT/PMMA nanocomposite fibers have no specific SWCNT-polymer interactions and the high degree of nanotube alignment minimizes the contributions from nanotube-nanotube interactions. Although tensile testing found significantly improved overall mechanical properties of the fibers, effective stress transfer to SWCNTs is limited to a small strain regime (epsilon<0.2%). At higher strains, the stress on the SWCNTs decreases due to the slippage at the nanotube-polymer interface. Slippage was also evident in scanning electron micrographs of fracture surfaces produced by tensile testing of the composite fibers. Above epsilon = 0.2%, the strain-induced slippage was accompanied by irreversible responses in stress and Raman peak shifts. This paper shows that efficient stress transfer to nanotubes as monitored by Raman spectroscopy is crucial to improving the mechanical properties of polymer nanocomposites and to detecting internal damage in nanocomposites.

102 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Abstract: Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

14,213 citations