scispace - formally typeset
Search or ask a question
Author

Yusuke Sasaki

Other affiliations: Hokkaido University
Bio: Yusuke Sasaki is an academic researcher from Fujikura. The author has contributed to research in topics: Cladding (fiber optics) & Optical fiber. The author has an hindex of 25, co-authored 96 publications receiving 2120 citations. Previous affiliations of Yusuke Sasaki include Hokkaido University.

Papers published on a yearly basis

Papers
More filters
Proceedings ArticleDOI
16 Sep 2012
TL;DR: In this article, the authors demonstrate 1.01-Pb/s transmission over 52 km with the highest aggregate spectral efficiency of 91.4 b/s/Hz by using low-crosstalk one-ring-structured 12-core fiber.
Abstract: (40-Word Limit): We demonstrate 1.01-Pb/s transmission over 52 km with the highest aggregate spectral efficiency of 91.4 b/s/Hz by using low-crosstalk one-ring-structured 12-core fiber. Our multi-core fiber and compact fan-in/fan-out devices are designed to support high-order modulation formats up to 32-QAM in SDM transmission.

323 citations

Journal ArticleDOI
TL;DR: A frequency comb realized by a non-resonant aluminium-gallium-arsenide-on-insulator (AlGaAsOI) nanowaveguide with 66% pump-to-comb conversion efficiency is presented, which is significantly higher than state-of-the-art resonant comb sources.
Abstract: The Internet today transmits hundreds of terabits per second, consumes 9% of all electricity worldwide and grows by 20–30% per year1,2. To support capacity demand, massively parallel communication links are installed, not scaling favourably concerning energy consumption. A single frequency comb source may substitute many parallel lasers and improve system energy-efficiency3,4. We present a frequency comb realized by a non-resonant aluminium-gallium-arsenide-on-insulator (AlGaAsOI) nanowaveguide with 66% pump-to-comb conversion efficiency, which is significantly higher than state-of-the-art resonant comb sources. This enables unprecedented high data-rate transmission for chip-based sources, demonstrated using a single-mode 30-core fibre. We show that our frequency comb can carry 661 Tbit s–1 of data, equivalent to more than the total Internet traffic today. The comb is obtained by seeding the AlGaAsOI chip with 10-GHz picosecond pulses at a low pump power (85 mW), and this scheme is robust to temperature changes, is energy efficient and facilitates future integration with on-chip lasers or amplifiers5,6. By seeding a non-resonant aluminium-gallium-arsenide-on-insulator nanowaveguide with 10-GHz picosecond pulses at a low pump power of 85 mW, a single energy-efficient frequency comb source carrying 661 Tbit s–1 of data, equivalent to more than the total Internet traffic today, is achieved.

196 citations

Proceedings ArticleDOI
09 Mar 2014
TL;DR: Dense SDM transmission of 20-WDM multi-carrier PDM-32QAM signals over a 40-km 12-core × 3-mode fiber with 247.9-b/s/Hz spectral efficiency is demonstrated.
Abstract: We demonstrate dense SDM transmission of 20-WDM multi-carrier PDM-32QAM signals over a 40-km 12-core × 3-mode fiber with 247.9-b/s/Hz spectral efficiency. Parallel MIMO equalization enables 21-ns DMD compensation with 61 TDE taps per subcarrier.

139 citations

Journal ArticleDOI
TL;DR: The cladding-thickness of trench-assisted multi-core fibres was investigated in terms of excess losses and the MCF with an effective area of 110 μm and 181-μm cladding diameter was realised without any excess loss.
Abstract: The cladding thickness of trench-assisted multi-core fibers was theoretically and experimentally investigated in terms of excess losses of outer cores. No significant micro-bending loss increase was observed on multi-core fibers with the cladding thickness of about 30 µm. The tolerance for the micro-bending loss of a multi-core fiber is larger than that of the single core fiber. However, the cladding thickness will be limited by the occurrence of the excess loss on outer cores. The reduction of cladding thickness is probably limited around 40 µm in terms of the excess loss. The multi-core fiber with an effective area of 110 µm(2) at 1.55 µm and 181-µm cladding diameter was realized without any excess loss.

133 citations

Journal ArticleDOI
TL;DR: A multicore fiber with two-pitch layout is proposed to overcome the trade-off between core number and a cladding diameter of a standard hexagonal layout with a single-core pitch.
Abstract: A multicore fiber with two-pitch layout is proposed to overcome the trade-off between core number and a cladding diameter of a standard hexagonal layout with a single-core pitch. A fabricated ten-core fiber simultaneously realizes effective area of about 120 μm2 at 1550 nm, small crosstalk, and cladding diameter of 204 μm. The crosstalk between the center core and outer cores is about 30 dB smaller than that between outer cores. The small crosstalk of the center core would help to keep the transmission quality of the center core at the same level as that of the outer cores.

129 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors summarized the simultaneous transmission of several independent spatial channels of light along optical fibres to expand the data-carrying capacity of optical communications, and showed that the results achieved in both multicore and multimode optical fibers are documented.
Abstract: This Review summarizes the simultaneous transmission of several independent spatial channels of light along optical fibres to expand the data-carrying capacity of optical communications. Recent results achieved in both multicore and multimode optical fibres are documented.

2,629 citations

Journal ArticleDOI
TL;DR: In this article, the authors review recent progress in OAM beam generation/detection, multiplexing/demultiplexing, and its potential applications in different scenarios including free-space optical communications, fiber-optic communications, and RF communications.
Abstract: Orbital angular momentum (OAM), which describes the “phase twist” (helical phase pattern) of light beams, has recently gained interest due to its potential applications in many diverse areas. Particularly promising is the use of OAM for optical communications since: (i) coaxially propagating OAM beams with different azimuthal OAM states are mutually orthogonal, (ii) inter-beam crosstalk can be minimized, and (iii) the beams can be efficiently multiplexed and demultiplexed. As a result, multiple OAM states could be used as different carriers for multiplexing and transmitting multiple data streams, thereby potentially increasing the system capacity. In this paper, we review recent progress in OAM beam generation/detection, multiplexing/demultiplexing, and its potential applications in different scenarios including free-space optical communications, fiber-optic communications, and RF communications. Technical challenges and perspectives of OAM beams are also discussed.

1,398 citations

Journal ArticleDOI
08 Jun 2017-Nature
TL;DR: This work exploits the scalability of microresonator-based DKS frequency comb sources for massively parallel optical communications at both the transmitter and the receiver, and demonstrates the potential of these sources to replace the arrays of continuous-wave lasers that are currently used in high-speed communications.
Abstract: Solitons are waveforms that preserve their shape while propagating, as a result of a balance of dispersion and nonlinearity. Soliton-based data transmission schemes were investigated in the 1980s and showed promise as a way of overcoming the limitations imposed by dispersion of optical fibres. However, these approaches were later abandoned in favour of wavelength-division multiplexing schemes, which are easier to implement and offer improved scalability to higher data rates. Here we show that solitons could make a comeback in optical communications, not as a competitor but as a key element of massively parallel wavelength-division multiplexing. Instead of encoding data on the soliton pulse train itself, we use continuous-wave tones of the associated frequency comb as carriers for communication. Dissipative Kerr solitons (DKSs) (solitons that rely on a double balance of parametric gain and cavity loss, as well as dispersion and nonlinearity) are generated as continuously circulating pulses in an integrated silicon nitride microresonator via four-photon interactions mediated by the Kerr nonlinearity, leading to low-noise, spectrally smooth, broadband optical frequency combs. We use two interleaved DKS frequency combs to transmit a data stream of more than 50 terabits per second on 179 individual optical carriers that span the entire telecommunication C and L bands (centred around infrared telecommunication wavelengths of 1.55 micrometres). We also demonstrate coherent detection of a wavelength-division multiplexing data stream by using a pair of DKS frequency combs-one as a multi-wavelength light source at the transmitter and the other as the corresponding local oscillator at the receiver. This approach exploits the scalability of microresonator-based DKS frequency comb sources for massively parallel optical communications at both the transmitter and the receiver. Our results demonstrate the potential of these sources to replace the arrays of continuous-wave lasers that are currently used in high-speed communications. In combination with advanced spatial multiplexing schemes and highly integrated silicon photonic circuits, DKS frequency combs could bring chip-scale petabit-per-second transceivers into reach.

922 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarize the developments, applications and underlying physics of optical frequency comb generation in photonic-chip waveguides via supercontinuum generation and in microresonators via Kerr-comb generation that enable comb technology from the near-ultraviolet to the mid-infrared regime.
Abstract: Recent developments in chip-based nonlinear photonics offer the tantalizing prospect of realizing many applications that can use optical frequency comb devices that have form factors smaller than 1 cm3 and that require less than 1 W of power. A key feature that enables such technology is the tight confinement of light due to the high refractive index contrast between the core and the cladding. This simultaneously produces high optical nonlinearities and allows for dispersion engineering to realize and phase match parametric nonlinear processes with laser-pointer powers across large spectral bandwidths. In this Review, we summarize the developments, applications and underlying physics of optical frequency comb generation in photonic-chip waveguides via supercontinuum generation and in microresonators via Kerr-comb generation that enable comb technology from the near-ultraviolet to the mid-infrared regime. This Review discusses the developments and applications of on-chip optical frequency comb generation based on two concepts—supercontinuum generation in photonic-chip waveguides and Kerr-comb generation in microresonators.

650 citations

Journal ArticleDOI
TL;DR: This paper focuses on SDM for fiber-optic communication using few-mode fibers or multimode fibers, in particular on the critical challenge of mode crosstalk, and presents the prospects for SDM in optical transmission and networking.
Abstract: Space-division multiplexing (SDM) uses multiplicity of space channels to increase capacity for optical communication. It is applicable for optical communication in both free space and guided waves. This paper focuses on SDM for fiber-optic communication using few-mode fibers or multimode fibers, in particular on the critical challenge of mode crosstalk. Multiple-input–multiple-output (MIMO) equalization methods developed for wireless communication can be applied as an electronic method to equalize mode crosstalk. Optical approaches, including differential modal group delay management, strong mode coupling, and multicore fibers, are necessary to bring the computational complexity for MIMO mode crosstalk equalization to practical levels. Progress in passive devices, such as (de)multiplexers, and active devices, such as amplifiers and switches, which are considered straightforward challenges in comparison with mode crosstalk, are reviewed. Finally, we present the prospects for SDM in optical transmission and networking.

621 citations