scispace - formally typeset
Search or ask a question
Author

Yutaka Tagaya

Bio: Yutaka Tagaya is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Interleukin 15 & Cytotoxic T cell. The author has an hindex of 24, co-authored 31 publications receiving 5319 citations.

Papers
More filters
Journal ArticleDOI
01 Nov 2002-Immunity
TL;DR: These complexes on activated monocytes present IL-15 in trans to target cells such as CD8 + T cells that express only IL-2/15Rβ and γc upon cell-cell interaction and contribute to the long survival of T cells expressing IL- 15Rα afterIL-15 withdrawal.

874 citations

Journal ArticleDOI
TL;DR: Abnormalities of IL-15 expression have been described in patients with rheumatoid arthritis or inflammatory bowel disease and in diseases associated with the retroviruses HIV and HTLV-I.
Abstract: ▪ Abstract Interleukin-15 (IL-15) is a 14- to 15-kDa member of the 4 α-helix bundle family of cytokines. IL-15 expression is controlled at the levels of transcription, translation, and intracellular trafficking. In particular, IL-15 protein is posttranscriptionally regulated by multiple controlling elements that impede translation, including 12 upstream AUGs of the 5′ UTR, 2 unusual signal peptides, and the C-terminus of the mature protein. IL-15 uses two distinct receptor and signaling pathways. In T and NK cells the IL-15 receptor includes IL-2/15Rβ and γc, subunits, which are shared with IL-2, and an IL-15-specific receptor subunit, IL-15Rα. Mast cells respond to IL-15 with a receptor system that does not share elements with the IL-2 receptor but uses a novel 60- to 65-kDa IL-15RX subunit. In mast cells IL-15 signaling involves Jak2/STAT5 activation rather than the Jak1/Jak3 and STAT5/STAT3 system used in activated T cells. In addition to its other functional activities in immune and nonimmune cells, I...

712 citations

Journal ArticleDOI
TL;DR: It is demonstrated that IL-15 can improve the in vivo antitumor activity of adoptively transferred CD8+ T cells, which provides several avenues for improving adoptive immunotherapy of cancer in patients.
Abstract: IL-15 and IL-2 possess similar properties, including the ability to induce T cell proliferation. However, whereas IL-2 can promote apoptosis and limit CD8+ memory T cell survival and proliferation, IL-15 helps maintain a memory CD8+ T cell population and can inhibit apoptosis. We sought to determine whether IL-15 could enhance the in vivo function of tumor/self-reactive CD8+ T cells by using a T cell receptor transgenic mouse (pmel-1) whose CD8+ T cells recognize an epitope derived from the self/melanoma antigen gp100. By removing endogenous IL-15 by using tumor-bearing IL-15 knockout hosts or supplementing IL-15 by means of exogenous administration, as a component of culture media or as a transgene expressed by adoptively transferred T cells, we demonstrate that IL-15 can improve the in vivo antitumor activity of adoptively transferred CD8+ T cells. These results provide several avenues for improving adoptive immunotherapy of cancer in patients.

564 citations

Journal ArticleDOI
01 Feb 2001-Immunity
TL;DR: This work concludes that IL-15 with its inhibitory action on AICD and its stimulatory role in the persistence of memory CD8+ T cells may be superior to IL-2 in the treatment of cancer and as a component of vaccines directed toward cancer or infectious agents.

456 citations


Cited by
More filters
Journal ArticleDOI
30 May 2008-Cell
TL;DR: The cellular and molecular basis of Treg development and function is revealed and dysregulation of T Regs in immunological disease is implicates.

4,427 citations

Journal ArticleDOI
TL;DR: Nanotechnology is a multidisciplinary field, which covers a vast and diverse array of devices derived from engineering, biology, physics and chemistry that can provide essential breakthroughs in the fight against cancer.
Abstract: Nanotechnology is a multidisciplinary field, which covers a vast and diverse array of devices derived from engineering, biology, physics and chemistry. These devices include nanovectors for the targeted delivery of anticancer drugs and imaging contrast agents. Nanowires and nanocantilever arrays are among the leading approaches under development for the early detection of precancerous and malignant lesions from biological fluids. These and other nanodevices can provide essential breakthroughs in the fight against cancer.

4,241 citations

Journal ArticleDOI
TL;DR: Results in cancer vaccine trials are considered and alternate strategies that mediate cancer regression in preclinical and clinical models are highlighted.
Abstract: Great progress has been made in the field of tumor immunology in the past decade, but optimism about the clinical application of currently available cancer vaccine approaches is based more on surrogate endpoints than on clinical tumor regression. In our cancer vaccine trials of 440 patients, the objective response rate was low (2.6%), and comparable to the results obtained by others. We consider here results in cancer vaccine trials and highlight alternate strategies that mediate cancer regression in preclinical and clinical models.

2,983 citations

Journal ArticleDOI
TL;DR: A detailed picture is developing of particular innate cytokines activating NK cell responses and their consorted effects in providing unique endogenous milieus promoting downstream adaptive responses, most beneficial in defense against viral infections.
Abstract: Natural killer (NK) cells are populations of lymphocytes that can be activated to mediate significant levels of cytotoxic activity and produce high levels of certain cytokines and chemokines. NK cells respond to and are important in defense against a number of different infectious agents. The first indications for this function came from the observations that virus-induced interferons alpha/beta (IFN-alpha and -beta) are potent inducers of NK cell-mediated cytotoxicity, and that NK cells are important contributors to innate defense against viral infections. In addition to IFN-alpha/beta, a wide range of other innate cytokines can mediate biological functions regulating the NK cell responses of cytotoxicity, proliferation, and gamma interferon (IFN-gamma) production. Certain, but not all, viral infections induce interleukin 12 (IL-12) to elicit NK cell IFN-gamma production and antiviral mechanisms. However, high levels of IFN-alpha/beta appear to be unique and/or uniquely dominant in the context of viral infections and act to regulate other innate responses, including induction of NK cell proliferation in vivo and overall negative regulation of IL-12 production. A detailed picture is developing of particular innate cytokines activating NK cell responses and their consorted effects in providing unique endogenous milieus promoting downstream adaptive responses, most beneficial in defense against viral infections.

2,198 citations

Journal ArticleDOI
TL;DR: The nature and characteristics of regulatory T cells in the tumour microenvironment and their potential multiple suppressive mechanisms are considered.
Abstract: Tumours express a range of antigens, including self-antigens. Regulatory T cells are crucial for maintaining T-cell tolerance to self-antigens. Regulatory T cells are thought to dampen T-cell immunity to tumour-associated antigens and to be the main obstacle tempering successful immunotherapy and active vaccination. In this Review, I consider the nature and characteristics of regulatory T cells in the tumour microenvironment and their potential multiple suppressive mechanisms. Strategies for therapeutic targeting of regulatory T cells and the effect of regulatory T cells on current immunotherapeutic and vaccine regimens are discussed.

2,015 citations