scispace - formally typeset
Search or ask a question
Author

Yuval Garini

Bio: Yuval Garini is an academic researcher from Bar-Ilan University. The author has contributed to research in topics: Spectral imaging & Lamin. The author has an hindex of 37, co-authored 156 publications receiving 7757 citations. Previous affiliations of Yuval Garini include Delft University of Technology & Technion – Israel Institute of Technology.


Papers
More filters
Journal ArticleDOI
26 Jul 1996-Science
TL;DR: Whole-genome scanning by spectral karyotyping allowed instantaneous visualization of defined emission spectra for each human chromosome after fluorescence in situ hybridization, and all human chromosomes were simultaneously identified.
Abstract: The simultaneous and unequivocal discernment of all human chromosomes in different colors would be of significant clinical and biologic importance. Whole-genome scanning by spectral karyotyping allowed instantaneous visualization of defined emission spectra for each human chromosome after fluorescence in situ hybridization. By means of computer separation (classification) of spectra, spectrally overlapping chromosome-specific DNA probes could be resolved, and all human chromosomes were simultaneously identified.

1,806 citations

Journal ArticleDOI
TL;DR: The irreproducibility of time-averaged observables in living cells poses fundamental questions for statistical mechanics and reshapes the views on cell biology.
Abstract: The irreproducibility of time-averaged observables in living cells poses fundamental questions for statistical mechanics and reshapes our views on cell biology.

630 citations

Journal ArticleDOI
TL;DR: The transient diffusion is consistent with a model of telomeres that are subject to a local binding mechanism with a wide but finite distribution of waiting times and has important biological implications with respect to the genome organization in the nucleus.
Abstract: We measured individual trajectories of fluorescently labeled telomeres in the nucleus of eukaryotic cells in the time range of 10-2–104 sec by combining a few acquisition methods. At short times the motion is subdiffusive with (r2)?t? and it changes to normal diffusion at longer times. The short times diffusion may be explained by the reptation model and the transient diffusion is consistent with a model of telomeres that are subject to a local binding mechanism with a wide but finite distribution of waiting times. These findings have important biological implications with respect to the genome organization in the nucleus.

453 citations

Journal ArticleDOI
TL;DR: Spectral imaging extends the capabilities of biological and clinical studies to simultaneously study multiple features such as organelles and proteins qualitatively and quantitatively by combining spectroscopy and imaging.
Abstract: Background: Spectral imaging extends the capabilities of biological and clinical studies to simultaneously study multiple features such as organelles and proteins qualitatively and quantitatively. Spectral imaging combines two well-known scientific methodologies, namely spectroscopy and imaging, to provide a new advantageous tool. The need to measure the spectrum at each point of the image requires combining dispersive optics with the more common imaging equipment, and introduces constrains as well. Methods and Results: The principles of spectral imaging and a few representative applications are described. Spectral imaging analysis is necessary because the complex data structure cannot be analyzed visually. A few of the algorithms are discussed with emphasis on the usage for different experimental modes (fluorescence and bright field). Finally, spectral imaging, like any method, should be evaluated in light of its advantages to specific applications, a selection of which is described. Conclusions: Spectral imaging is a relatively new technique and its full potential is yet to be exploited. Nevertheless, several applications have already shown its potential. q 2006 International Society for Analytical Cytology

425 citations

Patent
10 Dec 1996
TL;DR: Spectral imaging methods have been used for biological research, medical diagnostics and therapy to detect spatial organization and to quantify cellular (fig. 5) and tissue natural constituents, structures, organelles and administered components such as tagging probes as mentioned in this paper.
Abstract: Spectral imaging methods (fig. 2) for biological research, medical diagnostics and therapy to be used to detect spatial organization and to quantify cellular (fig. 5) and tissue natural constituents, structures, organelles and administered components such as tagging probes (fig. 27) and drugs using light transmission (fig. 9), reflection, scattering and fluorescence emission strategies (fig. 7), with high sensitivity and high spatial and spectral resolutions.

323 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
25 Sep 1998-Science
TL;DR: Semiconductor nanocrystals prepared for use as fluorescent probes in biological staining and diagnostics have a narrow, tunable, symmetric emission spectrum and are photochemically stable.
Abstract: Semiconductor nanocrystals were prepared for use as fluorescent probes in biological staining and diagnostics. Compared with conventional fluorophores, the nanocrystals have a narrow, tunable, symmetric emission spectrum and are photochemically stable. The advantages of the broad, continuous excitation spectrum were demonstrated in a dual-emission, single-excitation labeling experiment on mouse fibroblasts. These nanocrystal probes are thus complementary and in some cases may be superior to existing fluorophores.

8,542 citations

Journal ArticleDOI
TL;DR: This review looks at current methods for preparing QD bioconjugates as well as presenting an overview of applications, and concludes that the potential of QDs in biology has just begun to be realized and new avenues will arise as the ability to manipulate these materials improves.
Abstract: One of the fastest moving and most exciting interfaces of nanotechnology is the use of quantum dots (QDs) in biology. The unique optical properties of QDs make them appealing as in vivo and in vitro fluorophores in a variety of biological investigations, in which traditional fluorescent labels based on organic molecules fall short of providing long-term stability and simultaneous detection of multiple signals. The ability to make QDs water soluble and target them to specific biomolecules has led to promising applications in cellular labelling, deep-tissue imaging, assay labelling and as efficient fluorescence resonance energy transfer donors. Despite recent progress, much work still needs to be done to achieve reproducible and robust surface functionalization and develop flexible bioconjugation techniques. In this review, we look at current methods for preparing QD bioconjugates as well as presenting an overview of applications. The potential of QDs in biology has just begun to be realized and new avenues will arise as our ability to manipulate these materials improves.

5,875 citations

Journal Article
TL;DR: The identification and purification of a cancer stem cell from human brain tumors of different phenotypes that possesses a marked capacity for proliferation, self-renewal, and differentiation is reported.
Abstract: Most current research on human brain tumors is focused on the molecular and cellular analysis of the bulk tumor mass. However, there is overwhelming evidence in some malignancies that the tumor clone is heterogeneous with respect to proliferation and differentiation. In human leukemia, the tumor clone is organized as a hierarchy that originates from rare leukemic stem cells that possess extensive proliferative and self-renewal potential, and are responsible for maintaining the tumor clone. We report here the identification and purification of a cancer stem cell from human brain tumors of different phenotypes that possesses a marked capacity for proliferation, self-renewal, and differentiation. The increased self-renewal capacity of the brain tumor stem cell (BTSC) was highest from the most aggressive clinical samples of medulloblastoma compared with low-grade gliomas. The BTSC was exclusively isolated with the cell fraction expressing the neural stem cell surface marker CD133. These CD133+ cells could differentiate in culture into tumor cells that phenotypically resembled the tumor from the patient. The identification of a BTSC provides a powerful tool to investigate the tumorigenic process in the central nervous system and to develop therapies targeted to the BTSC.

4,899 citations

Journal ArticleDOI
TL;DR: A novel toolbox for subcellular colocalization analysis under ImageJ is created that integrates current global statistic methods and a novel object‐based approach to assess proteins residing on intracellular structures by fluorescence microscopy.
Abstract: Summary It is generally accepted that the functional compartmentalization of eukaryotic cells is reflected by the differential occurrence of proteins in their compartments. The location and physiological function of a protein are closely related; local information of a protein is thus crucial to understanding its role in biological processes. The visualization of proteins residing on intracellular structures by fluorescence microscopy has become a routine approach in cell biology and is increasingly used to assess their colocalization with well-characterized markers. However, imageanalysis methods for colocalization studies are a field of contention and enigma. We have therefore undertaken to review the most currently used colocalization analysis methods, introducing the basic optical concepts important for image acquisition and subsequent analysis. We provide a summary of practical tips for image acquisition and treatment that should precede proper colocalization analysis. Furthermore, we discuss the application and feasibility of colocalization tools for various biological colocalization situations and discuss their respective strengths and weaknesses. We have created a novel toolbox for subcellular colocalization analysis under Image J, named JACoP, that integrates current global statistic methods and a novel object-based approach.

4,195 citations