scispace - formally typeset
Search or ask a question
Author

Yuval Mulla

Bio: Yuval Mulla is an academic researcher from University of Cologne. The author has contributed to research in topics: Actin cytoskeleton & Stress relaxation. The author has an hindex of 7, co-authored 14 publications receiving 185 citations.

Papers
More filters
Journal ArticleDOI
18 Mar 2019
TL;DR: A review of recent experimental and theoretical studies of the mechanical behavior of biopolymer networks with a focus on reductionist approaches can be found in this paper, where the authors reveal how the porous structure, structural hierarchy, transient crosslinking and mechanochemical activity of Biopolymers confer resilience combined with the ability to adapt and self-heal.
Abstract: The cells and tissues that make up our body manage contradictory mechanical demands. It is crucial for their survival to be able to withstand large mechanical loads, but it is equally crucial for them to produce forces and actively change shape during biological processes such as tissue growth and repair. The mechanics of cells and tissues is determined by scaffolds of protein polymers known as the cytoskeleton and the extracellular matrix, respectively. Experiments on model systems reconstituted from purified components combined with polymer physics concepts have already uncovered some of the mechanisms that underlie the paradoxical mechanics of living matter. Initial work focused on explaining universal features, such as the nonlinear elasticity of cells and tissues, in terms of polymer network models. However, there is a growing recognition that living matter exhibits many advanced mechanical functionalities that are not captured by these coarse-grained theories. Here, we review recent experimental and theoretical insights that reveal how the porous structure, structural hierarchy, transient crosslinking and mechanochemical activity of biopolymers confer resilience combined with the ability to adapt and self-heal. These physical concepts increase our understanding of cell and tissue biology and provide inspiration for advanced synthetic materials. Biopolymer networks provide mechanical integrity and enable active deformation of cells and tissues. Here, we review recent experimental and theoretical studies of the mechanical behaviour of biopolymer networks with a focus on reductionist approaches.

81 citations

Journal ArticleDOI
TL;DR: Recent experimental and theoretical insights reveal how the porous structure, structural hierarchy, transient crosslinking and mechanochemical activity of biopolymers confer resilience combined with the ability to adapt and self-heal in cells and tissues.
Abstract: The cells and tissues that make up our body juggle contradictory mechanical demands. It is crucial for their survival to be able to withstand large mechanical loads, but it is equally crucial for them to produce forces and actively change shape during biological processes such as tissue growth and repair. The mechanics of cell and tissues is determined by scaffolds of protein polymers known as the cytoskeleton and the extracellular matrix, respectively. Experiments on model systems reconstituted from purified components combined with polymer physics concepts have already successfully uncovered some of the mechanisms that underlie the paradoxical mechanics of living matter. Initial work focussed on explaining universal features such as the nonlinear elasticity of cells and tissues in terms of polymer network models. However, living matter exhibits many advanced mechanical functionalities that are not captured by these coarse-grained theories. In this Review, we focus on recent experimental and theoretical insights revealing how their porous structure, structural hierarchy, transient crosslinking, and mechanochemical activity confer resilience combined with the ability to adapt and self-heal. These physical insights improve our understanding of cell and tissue biology and also provide a source of inspiration for synthetic life-like materials.

67 citations

Journal ArticleDOI
TL;DR: This work suggests that transient cross-linking combined with internal stress can explain prior reports of soft glassy rheology of cells, in which the shear modulus increases weakly with frequency.
Abstract: Dynamically cross-linked semiflexible biopolymers such as the actin cytoskeleton govern the mechanical behavior of living cells. Semiflexible biopolymers nonlinearly stiffen in response to mechanical loads, whereas the cross-linker dynamics allow for stress relaxation over time. Here we show, through rheology and theoretical modeling, that the combined nonlinearity in time and stress leads to an unexpectedly slow stress relaxation, similar to the dynamics of disordered systems close to the glass transition. Our work suggests that transient cross-linking combined with internal stress can explain prior reports of soft glassy rheology of cells, in which the shear modulus increases weakly with frequency.

43 citations

Journal ArticleDOI
TL;DR: These findings on the GUVs containing a biomimetic network provide a step towards understanding the discrepancies between the electroporation mechanism of a living cell and its simplified model of the empty GUV.
Abstract: We study the role of a biomimetic actin network during the application of electric pulses that induce electroporation or electropermeabilization, using giant unilamellar vesicles (GUVs) as a model system. The actin cortex, a subjacently attached interconnected network of actin filaments, regulates the shape and mechanical properties of the plasma membrane of mammalian cells, and is a major factor influencing the mechanical response of the cell to external physical cues. We demonstrate that the presence of an actin shell inhibits the formation of macropores in the electroporated GUVs. Additionally, experiments on the uptake of dye molecules after electroporation show that the actin network slows down the resealing process of the permeabilized membrane. We further analyze the stability of the actin network inside the GUVs exposed to high electric pulses. We find disruption of the actin layer that is likely due to the electrophoretic forces acting on the actin filaments during the permeabilization of the GUVs. Our findings on the GUVs containing a biomimetic network provide a step towards understanding the discrepancies between the electroporation mechanism of a living cell and its simplified model of the empty GUV.

39 citations

Journal ArticleDOI
TL;DR: A route-map of the recent advances in cytoskeletal encapsulation techniques is provided and recent reports that demonstrate shape change phenomena in simple biomimetic vesicle systems are outlined, with an outlook toward the next steps required to achieve more complex shape changes.
Abstract: How do the cells in our body reconfigure their shape to achieve complex tasks like migration and mitosis, yet maintain their shape in response to forces exerted by, for instance, blood flow and muscle action? Cell shape control is defined by a delicate mechanical balance between active force generation and passive material properties of the plasma membrane and the cytoskeleton. The cytoskeleton forms a space-spanning fibrous network comprising three subsystems: actin, microtubules and intermediate filaments. Bottom-up reconstitution of minimal synthetic cells where these cytoskeletal subsystems are encapsulated inside a lipid vesicle provides a powerful avenue to dissect the force balance that governs cell shape control. Although encapsulation is technically demanding, a steady stream of advances in this technique has made the reconstitution of shape-changing minimal cells increasingly feasible. In this topical review we provide a route-map of the recent advances in cytoskeletal encapsulation techniques and outline recent reports that demonstrate shape change phenomena in simple biomimetic vesicle systems. We end with an outlook toward the next steps required to achieve more complex shape changes with the ultimate aim of building a fully functional synthetic cell with the capability to autonomously grow, divide and move.

25 citations


Cited by
More filters
Journal ArticleDOI
01 Feb 2020
TL;DR: It is proposed that food gels may offer advantages over their synthetic counterparts owing to their source renewability, low cost, biocompatibility and biodegradability.
Abstract: Naturally sourced gels from food biopolymers have advanced in recent decades to compare favourably in performance and breadth of application to their synthetic counterparts. Here, we comprehensively review the constitutive nature, gelling mechanisms, design approaches, and structural and mechanical properties of food gels. We then consider how these food gel design principles alter rheological and tribological properties for food quality improvement, nutrient-modification of foods while preserving sensory perception, and targeted delivery of drugs and bioactives within the gastrointestinal tract. We propose that food gels may offer advantages over their synthetic counterparts owing to their source renewability, low cost, biocompatibility and biodegradability. We also identify emerging approaches and trends that may improve and expand the current scope, properties and functionalities of food gels and inspire new applications. A comprehensive review of the constitutive nature, design approaches, structural properties and applications of food gels, pertinent to the food science, nutrition and health communities.

210 citations

Journal ArticleDOI
30 Sep 2020-Nature
TL;DR: This combined experimental and simulation study demonstrates how self-propelled particles enclosed in giant unilamellar vesicles can induce a plethora of non-equilibrium shapes and active membrane fluctuations.
Abstract: Biological cells generate intricate structures by sculpting their membrane from within to actively sense and respond to external stimuli or to explore their environment1–4. Several pathogenic bacteria also provide examples of how localized forces strongly deform cell membranes from inside, leading to the invasion of neighbouring healthy mammalian cells5. Giant unilamellar vesicles have been successfully used as a minimal model system with which to mimic biological cells6–11, but the realization of a minimal system with localized active internal forces that can strongly deform lipid membranes from within and lead to dramatic shape changes remains challenging. Here we present a combined experimental and simulation study that demonstrates how self-propelled particles enclosed in giant unilamellar vesicles can induce a plethora of non-equilibrium shapes and active membrane fluctuations. Using confocal microscopy, in the experiments we explore the membrane response to local forces exerted by self-phoretic Janus microswimmers. To quantify dynamic membrane changes, we perform Langevin dynamics simulations of active Brownian particles enclosed in thin membrane shells modelled by dynamically triangulated surfaces. The most pronounced shape changes are observed at low and moderate particle loadings, with the formation of tether-like protrusions and highly branched, dendritic structures, whereas at high volume fractions globally deformed vesicle shapes are observed. The resulting state diagram predicts the conditions under which local internal forces generate various membrane shapes. A controlled realization of such distorted vesicle morphologies could improve the design of artificial systems such as small-scale soft robots and synthetic cells. Experiments and simulations show that local non-equilibrium forces exerted by self-propelled particles trapped inside a giant unilamellar lipid vesicle induce dramatic shape changes in the vesicle.

99 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the mechanisms of cell death after electroporation reported in literature, cell injuries that may lead to cell death, and membrane repair mechanisms involved, and identify the targets of electric field in cells need to be identified to optimize existing and develop of new electrophoration-based techniques used in medicine, biotechnology, and food technology.

99 citations

Journal ArticleDOI
TL;DR: A hydrogel design using tandem-repeat proteins as the cross-linkers and random coiled polymers as the percolating network which results in high stretchability, low hysteresis and high fracture toughness is demonstrated.
Abstract: Hydrogel-based devices are widely used as flexible electronics, biosensors, soft robots, and intelligent human-machine interfaces. In these applications, high stretchability, low hysteresis, and anti-fatigue fracture are essential but can be rarely met in the same hydrogels simultaneously. Here, we demonstrate a hydrogel design using tandem-repeat proteins as the cross-linkers and random coiled polymers as the percolating network. Such a design allows the polyprotein cross-linkers only to experience considerable forces at the fracture zone and unfold to prevent crack propagation. Thus, we are able to decouple the hysteresis-toughness correlation and create hydrogels of high stretchability (~1100%), low hysteresis (< 5%), and high fracture toughness (~900 J m−2). Moreover, the hydrogels show a high fatigue threshold of ~126 J m−2 and can undergo 5000 load-unload cycles up to 500% strain without noticeable mechanical changes. Our study provides a general route to decouple network elasticity and local mechanical response in synthetic hydrogels. High stretchability, low hysteresis and anti-fatigue fracture are essential for hydrogel-based devices but it is rare to achieve. Here the authors demonstrate a hydrogel design using tandem-repeat proteins as the cross-linkers and random coiled polymers as the percolating network which results in high stretchability, low hysteresis and high fracture toughness.

94 citations

Journal ArticleDOI
18 Mar 2019
TL;DR: A review of recent experimental and theoretical studies of the mechanical behavior of biopolymer networks with a focus on reductionist approaches can be found in this paper, where the authors reveal how the porous structure, structural hierarchy, transient crosslinking and mechanochemical activity of Biopolymers confer resilience combined with the ability to adapt and self-heal.
Abstract: The cells and tissues that make up our body manage contradictory mechanical demands. It is crucial for their survival to be able to withstand large mechanical loads, but it is equally crucial for them to produce forces and actively change shape during biological processes such as tissue growth and repair. The mechanics of cells and tissues is determined by scaffolds of protein polymers known as the cytoskeleton and the extracellular matrix, respectively. Experiments on model systems reconstituted from purified components combined with polymer physics concepts have already uncovered some of the mechanisms that underlie the paradoxical mechanics of living matter. Initial work focused on explaining universal features, such as the nonlinear elasticity of cells and tissues, in terms of polymer network models. However, there is a growing recognition that living matter exhibits many advanced mechanical functionalities that are not captured by these coarse-grained theories. Here, we review recent experimental and theoretical insights that reveal how the porous structure, structural hierarchy, transient crosslinking and mechanochemical activity of biopolymers confer resilience combined with the ability to adapt and self-heal. These physical concepts increase our understanding of cell and tissue biology and provide inspiration for advanced synthetic materials. Biopolymer networks provide mechanical integrity and enable active deformation of cells and tissues. Here, we review recent experimental and theoretical studies of the mechanical behaviour of biopolymer networks with a focus on reductionist approaches.

81 citations