scispace - formally typeset
Search or ask a question
Author

Yuval Shavitt

Other affiliations: Cisco Systems, Inc., Bell Labs, Ruhr University Bochum  ...read more
Bio: Yuval Shavitt is an academic researcher from Tel Aviv University. The author has contributed to research in topics: The Internet & Routing protocol. The author has an hindex of 43, co-authored 193 publications receiving 7717 citations. Previous affiliations of Yuval Shavitt include Cisco Systems, Inc. & Bell Labs.


Papers
More filters
Journal ArticleDOI
TL;DR: This analysis uses information on the connectivity of the network shells to separate, in a unique (no parameters) way, the Internet into three subcomponents: a nucleus that is a small, very well connected globally distributed subgraph; a fractal subcomponent that is able to connect the bulk of the Internet without congesting the nucleus, with self-similar properties and critical exponents predicted from percolation theory.
Abstract: We study a map of the Internet (at the autonomous systems level), by introducing and using the method of k-shell decomposition and the methods of percolation theory and fractal geometry, to find a model for the structure of the Internet. In particular, our analysis uses information on the connectivity of the network shells to separate, in a unique (no parameters) way, the Internet into three subcomponents: (i) a nucleus that is a small (≈100 nodes), very well connected globally distributed subgraph; (ii) a fractal subcomponent that is able to connect the bulk of the Internet without congesting the nucleus, with self-similar properties and critical exponents predicted from percolation theory; and (iii) dendrite-like structures, usually isolated nodes that are connected to the rest of the network through the nucleus only. We show that our method of decomposition is robust and provides insight into the underlying structure of the Internet and its functional consequences. Our approach of decomposing the network is general and also useful when studying other complex networks.

737 citations

Journal ArticleDOI
TL;DR: In this paper, the authors propose a scalable Internet-wide architecture, called IDMaps, which measures and disseminates distance information on the global Internet, and present solutions to the measurement server placement and distance map construction problems in IDMaps.
Abstract: There is an increasing need to quickly and efficiently learn network distances, in terms of metrics such as latency or bandwidth, between Internet hosts. For example, Internet content providers often place data and server mirrors throughout the Internet to improve access latency for clients, and it is necessary to direct clients to the nearest mirrors based on some distance metric in order to realize the benefit of the mirrors. We suggest a scalable Internet-wide architecture, called IDMaps, which measures and disseminates distance information on the global Internet. Higher level services can collect such distance information to build a virtual distance map of the Internet and estimate the distance between any pair of IP addresses. We present our solutions to the measurement server placement and distance map construction problems in IDMaps. We show that IDMaps can indeed provide useful distance estimations to applications such as nearest mirror selection.

511 citations

Journal ArticleDOI
06 Oct 2005
TL;DR: The rationale behind DIMES deployment is described, its design trade-offs and algorithmic challenges are discussed, and the structure of the Internet as it seen with DIMes is analyzed.
Abstract: Today's Internet maps, which are all collected from a small number of vantage points, are falling short of being accurate We suggest here a paradigm shift for this task DIMES is a distributed measurement infrastructure for the Internet that is based on the deployment of thousands of light weight measurement agents around the globe We describe the rationale behind DIMES deployment, discuss its design trade-offs and algorithmic challenges, and analyze the structure of the Internet as it seen with DIMES

455 citations

Journal ArticleDOI
TL;DR: There is a surprising consistency over time in the relative amount of web traffic from the server along a path, lending a stability to the TERC location solution and these techniques can be used by network providers to reduce traffic load in their network.
Abstract: This paper studies the problem of where to place network caches. Emphasis is given to caches that are transparent to the clients since they are easier to manage and they require no cooperation from the clients. Our goal is to minimize the overall flow or the average delay by placing a given number of caches in the network. We formulate these location problems both for general caches and for transparent en-route caches (TERCs), and identify that, in general, they are intractable. We give optimal algorithms for line and ring networks, and present closed form formulae for some special cases. We also present a computationally efficient dynamic programming algorithm for the single server case. This last case is of particular practical interest. It models a network that wishes to minimize the average access delay for a single web server. We experimentally study the effects of our algorithm using real web server data. We observe that a small number of TERCs are sufficient to reduce the network traffic significantly. Furthermore, there is a surprising consistency over time in the relative amount of web traffic from the server along a path, lending a stability to our TERC location solution. Our techniques can be used by network providers to reduce traffic load in their network.

400 citations

Proceedings ArticleDOI
09 Jul 2003
TL;DR: This paper identifies four different regions of TCP unfairness that depend on the buffer availability at the base station, with some regions exhibiting significant unfairness of over 10 in terms of throughput ratio between upstream and downstream TCP flows.
Abstract: As local area wireless networks based on the IEEE 802.11 standard see increasing public deployment, it is important to ensure that access to the network by different users remains fair. While fairness issues in 802.11 networks have been studied before, this paper is the first to focus on TCP fairness in 802.11 networks in the presence of both mobile senders and receivers. In this paper, we evaluate extensively through analysis, simulation, and experimentation the interaction between the 802.11 MAC protocol and TCP. We identify four different regions of TCP unfairness that depend on the buffer availability at the base station, with some regions exhibiting significant unfairness of over 10 in terms of throughput ratio between upstream and downstream TCP flows. We also propose a simple solution that can be implemented at the base station above the MAC layer that ensures that different TCP flows share the 802.11 bandwidth equitably irrespective of the buffer availability at the base station.

342 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

Journal ArticleDOI
TL;DR: This paper showed that the most efficient spreaders are not always necessarily the most connected agents in a network, and that the position of an agent relative to the hierarchical topological organization of the network might be as important as its connectivity.
Abstract: Spreading of information, ideas or diseases can be conveniently modelled in the context of complex networks. An analysis now reveals that the most efficient spreaders are not always necessarily the most connected agents in a network. Instead, the position of an agent relative to the hierarchical topological organization of the network might be as important as its connectivity.

2,618 citations

Journal ArticleDOI
TL;DR: Recent progress about link prediction algorithms is summarized, emphasizing on the contributions from physical perspectives and approaches, such as the random-walk-based methods and the maximum likelihood methods.
Abstract: Link prediction in complex networks has attracted increasing attention from both physical and computer science communities. The algorithms can be used to extract missing information, identify spurious interactions, evaluate network evolving mechanisms, and so on. This article summaries recent progress about link prediction algorithms, emphasizing on the contributions from physical perspectives and approaches, such as the random-walk-based methods and the maximum likelihood methods. We also introduce three typical applications: reconstruction of networks, evaluation of network evolving mechanism and classification of partially labeled networks. Finally, we introduce some applications and outline future challenges of link prediction algorithms.

2,530 citations