scispace - formally typeset
Search or ask a question
Author

Yuwen Hong

Bio: Yuwen Hong is an academic researcher. The author has contributed to research in topics: Virus & Influenza A virus. The author has an hindex of 1, co-authored 1 publications receiving 34 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The assay is a rapid, accurate, user-friendly method for simultaneously typing and subtyping influenza viruses and to distinguish influenza A virus subtypes H1N1 and H3N2 from the potentially pandemic avian virus subtype H5N1.
Abstract: We report on the use of an electronic microarray to simultaneously type influenza A and B viruses and to distinguish influenza A virus subtypes H1N1 and H3N2 from the potentially pandemic avian virus subtype H5N1. The assay targets seven genes: the H1, H3, H5, N1, and N2 genes of influenza A virus; the matrix protein M1 gene of influenza A virus; and the nonstructural protein (NS) gene of influenza B virus. By combining a two-step reverse transcription-multiplex PCR with typing and subtyping on the electronic microarray, the assay achieved an analytical sensitivity of 102 to 103 copies of transcripts per reaction for each of the genes. The assay correctly typed and subtyped 15 different influenza virus isolates, including two influenza B virus, five A/H1N1, six A/H3N2, and two A/H5N1 isolates. In addition, the assay correctly identified 8 out of 10 diluted, archived avian influenza virus specimens with complete typing and subtyping information and 2 specimens with partial subtyping information. In a study of 146 human clinical specimens that had previously been shown to be positive for influenza virus or another respiratory virus, the assay showed a clinical sensitivity of 96% and a clinical specificity of 100%. The assay is a rapid, accurate, user-friendly method for simultaneously typing and subtyping influenza viruses.

35 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The need and role for subtyping of influenza viruses and antiviral susceptibility testing will likely depend on qualitative (circulating subtypes and their resistance patterns) and quantitative (relative prevalence) characterization of influenza virus circulating during future epidemics and pandemics.
Abstract: Summary: The menu of diagnostic tools that can be utilized to establish a diagnosis of influenza is extensive and includes classic virology techniques as well as new and emerging methods. This review of how the various existing diagnostic methods have been utilized, first in the context of a rapidly evolving outbreak of novel influenza virus and then during the different subsequent phases and waves of the pandemic, demonstrates the unique roles, advantages, and limitations of each of these methods. Rapid antigen tests were used extensively throughout the pandemic. Recognition of the low negative predictive values of these tests is important. Private laboratories with preexisting expertise, infrastructure, and resources for rapid development, validation, and implementation of laboratory-developed assays played an unprecedented role in helping to meet the diagnostic demands during the pandemic. FDA-cleared assays remain an important element of the diagnostic armamentarium during a pandemic, and a process must be developed with the FDA to allow manufacturers to modify these assays for detection of novel strains in a timely fashion. The need and role for subtyping of influenza viruses and antiviral susceptibility testing will likely depend on qualitative (circulating subtypes and their resistance patterns) and quantitative (relative prevalence) characterization of influenza viruses circulating during future epidemics and pandemics.

119 citations

Journal ArticleDOI
TL;DR: The application of these techniques, including reverse transcriptase-PCR, real-time PCR, microarrays and other nucleic acid sequencing-based amplifications have greatly enhanced the capability for surveillance and characterization of influenza viruses.
Abstract: Molecular-based techniques for detecting influenza viruses have become an integral component of human and animal surveillance programs in the last two decades. The recent pandemic of the swine-origin influenza A virus (H1N1) and the continuing circulation of highly pathogenic avian influenza A virus (H5N1) further stress the need for rapid and accurate identification and subtyping of influenza viruses for surveillance, outbreak management, diagnosis and treatment. There has been remarkable progress on the detection and molecular characterization of influenza virus infections in clinical, mammalian, domestic poultry and wild bird samples in recent years. The application of these techniques, including reverse transcriptase-PCR, real-time PCR, microarrays and other nucleic acid sequencing-based amplifications, have greatly enhanced the capability for surveillance and characterization of influenza viruses.

92 citations

Journal ArticleDOI
TL;DR: FluPlex as mentioned in this paper is a reverse transcription-PCR enzyme hybridization (RTP-EHP) based method for the detection and subtyping of influenza viruses, which was used to confirm the diagnoses for the first infected patients in Wisconsin.
Abstract: A large outbreak of novel influenza A (H1N1) virus (swine origin influenza virus [S-OIV]) infection in Milwaukee, WI, occurred in late April 2009. We had recently developed a rapid multiplex reverse transcription-PCR enzyme hybridization assay (FluPlex) to determine the type (A or B) and subtype (H1, H2, H3, H5, H7, H9, N1 [human], N1 [animal], N2, or N7) of influenza viruses, and this assay was used to confirm the diagnoses for the first infected patients in the state. The analytical sensitivity was excellent at 1.5 to 116 copies/reaction, or 10(-3) to 10(-1) 50% tissue culture infective doses/ml. The testing of all existing hemagglutinin and neuraminidase subtypes of influenza A virus and influenza B virus (41 influenza virus strains) and 24 common respiratory pathogens showed only one low-level H3 cross-reaction with an H10N7 avian strain and only at 5.2 x 10(6) copies/reaction, not at lower concentrations. Comparisons of the FluPlex results with results from multiple validated in-house molecular assays, CDC-validated FDA-approved assays, and gene sequencing demonstrated 100% positive agreement for the typing of 179 influenza A viruses and 3 influenza B viruses, the subtyping of 110 H1N1 (S-OIV; N1 [animal]), 62 H1N1 (human), and 6 H3N2 (human) viruses, and the identification of 24 negative clinical samples and 100% negative agreement for all viruses tested except H1N1 (human) (97.7%). The small number of false-positive H1N1 (human) samples most likely represent increased sensitivity over that of other in-house assays, with four of four results confirmed by the CDC's influenza virus subtyping assay. The FluPlex is a rapid, inexpensive, sensitive, and specific method for the typing and subtyping of influenza viruses and demonstrated outstanding utility during the first 2 weeks of an S-OIV infection outbreak. Methods for rapid detection and broad subtyping of influenza viruses, including animal subtypes, are needed to address public concern over the emergence of pandemic strains. Attempts to automate this assay are ongoing.

84 citations

Journal ArticleDOI
TL;DR: Molecular detection has many proven advantages over standard virological methods and will further separate itself through increased multiplexing, processing speed and automation.
Abstract: Respiratory tract viral infections are responsible for an incredible amount of morbidity and mortality throughout the world. Older diagnostic methods, such as tissue culture and serology, have been replaced with more advanced molecular techniques, such as PCR and reverse-transcriptase PCR, nucleic acid sequence-based amplification and loop-mediated isothermal amplification. These techniques are faster, have greater sensitivity and specificity, and are becoming increasingly accessible. In the minds of most, PCR has replaced tissue culture and serology as the gold standard for detection of respiratory viruses owing to its speed, availability and versatility. PCR/reverse-transcriptase PCR has been used in a variety of detection platforms, in multiplex assays (detecting multiple pathogens simultaneously) and in automated systems (sample in-answer out devices). Molecular detection has many proven advantages over standard virological methods and will further separate itself through increased multiplexing, processing speed and automation. However, tissue culture remains an important method for detecting novel viral mutations within a virus population, for detecting novel viruses and for phenotypic characterization of viral isolates.

82 citations

Journal ArticleDOI
TL;DR: Rapid, semiautomated, and fully automated multiplex real-time RT-PCR assays were developed and validated for the detection of influenza (Flu) A, Flu B, and respiratory syncytial virus (RSV) from nasopharyngeal specimens and were effectively used to distinguish Flu A infections from Flu B and RSV infections during the current S-OIV outbreak in Milwaukee, WI.

47 citations