scispace - formally typeset
Search or ask a question
Author

Yuxi Lin

Other affiliations: Sookmyung Women's University
Bio: Yuxi Lin is an academic researcher from Osaka University. The author has contributed to research in topics: Chemistry & Medicine. The author has an hindex of 10, co-authored 32 publications receiving 555 citations. Previous affiliations of Yuxi Lin include Sookmyung Women's University.

Papers
More filters
Journal ArticleDOI
TL;DR: By monitoring the kinetics of the formation of amyloid fibrils and glass-like amorphous aggregates, it is shown that solubility and supersaturation will be key factors for further understanding the aberrant aggregation of proteins.
Abstract: Amyloid fibrils and amorphous aggregates are two types of aberrant aggregates associated with protein misfolding diseases. Although they differ in morphology, the two forms are often treated indiscriminately. β2-microglobulin (β2m), a protein responsible for dialysis-related amyloidosis, forms amyloid fibrils or amorphous aggregates depending on the NaCl concentration at pH 2.5. We compared the kinetics of their formation, which was monitored by measuring thioflavin T fluorescence, light scattering, and 8-anilino-1-naphthalenesulfonate fluorescence. Thioflavin T fluorescence specifically monitors amyloid fibrillation, whereas light scattering and 8-anilino-1-naphthalenesulfonate fluorescence monitor both amyloid fibrillation and amorphous aggregation. The amyloid fibrils formed via a nucleation-dependent mechanism in a supersaturated solution, analogous to crystallization. The lag phase of fibrillation was reduced upon agitation with stirring or ultrasonic irradiation, and disappeared by seeding with preformed fibrils. In contrast, the glass-like amorphous aggregates formed rapidly without a lag phase. Neither agitation nor seeding accelerated the amorphous aggregation. Thus, by monitoring the kinetics, we can distinguish between crystal-like amyloid fibrils and glass-like amorphous aggregates. Solubility and supersaturation will be key factors for further understanding the aberrant aggregation of proteins.

251 citations

Journal ArticleDOI
TL;DR: Mechanistic insights are provided into the roles that pathologically thin bilayers may play in Aβ aggregation on neuronal bilayers, and pathological lipid oxidation may contribute to Aβ misfolding.

130 citations

Journal ArticleDOI
TL;DR: This review article focuses on the biophysical processes underlying the cross-seeding for some of the most commonly studied amyloid proteins, including hIAPP, human islet amyloids polypeptide (hIAPP), and alpha-synuclein.

95 citations

Journal ArticleDOI
TL;DR: P pH and alcohol concentration-dependent phase diagrams indicated that the persistent metastability of supersaturation determined the conformations of insulin, indicating the importance of an alternative view of amyloid fibrils as supersaturation-limited crystal-like aggregates formed above the solubility limit.

43 citations

Journal ArticleDOI
TL;DR: Although Aβ1-42 formed fibrils on SUVs at all POPC concentrations used, the lag time, elongation rate, maximum thioflavin T intensity, and fibrillar morphology were distinct, indicating polymorphic amyloid formation, according to comprehensive models for vesicle size-dependent Aβ amyloidsogenesis.
Abstract: We herein report the mechanism of amyloid formation of amyloid-β (Aβ) peptides on small (SUV) and large unilamellar vesicles (LUVs), which consist of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipids Although Aβ1–42 formed fibrils on SUVs at all POPC concentrations used, the lag time, elongation rate, maximum thioflavin T intensity, and fibrillar morphology were distinct, indicating polymorphic amyloid formation LUVs, at low POPC concentrations, did not markedly affect fibrillation kinetics; however, increases in POPC concentrations suppressed amyloid formation No significant differences in the thermal stabilities of Aβ1–42 fibrils formed with and without vesicles were observed, although fibrils formed on SUVs showed some differences with dilution SUVs markedly promoted Aβ1–40 fibrillation by condensing Aβ1–40, whereas no effects of LUVs on amyloidogenesis were detected Salts greatly increased Aβ1–40 amyloidogenicity on vesicles We proposed comprehensive models for vesicle size-dependent Aβ amyloidogenesis Inhomogeneous packing defects in SUVs may induce distinct nucleation in the polymorphisms of amyloids and decreasing local concentrations of Aβ with higher amounts of LUVs inhibits amyloid formation We also pointed out that C-terminal hydrophobicity of Aβ is important for amyloidogenesis on membranes

38 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is shown that the orientation and twisting of β-sheets account for the observed spectral diversity, and a new method to estimate accurately the secondary structure is developed, and the originality of BeStSel is that it carries out a detailed secondary structure analysis.
Abstract: Circular dichroism (CD) spectroscopy is a widely used method to study the protein secondary structure. However, for decades, the general opinion was that the correct estimation of β-sheet content is challenging because of the large spectral and structural diversity of β-sheets. Recently, we showed that the orientation and twisting of β-sheets account for the observed spectral diversity, and developed a new method to estimate accurately the secondary structure (PNAS, 112, E3095). BeStSel web server provides the Beta Structure Selection method to analyze the CD spectra recorded by conventional or synchrotron radiation CD equipment. Both normalized and measured data can be uploaded to the server either as a single spectrum or series of spectra. The originality of BeStSel is that it carries out a detailed secondary structure analysis providing information on eight secondary structure components including parallel-β structure and antiparallel β-sheets with three different groups of twist. Based on these, it predicts the protein fold down to the topology/homology level of the CATH protein fold classification. The server also provides a module to analyze the structures deposited in the PDB for BeStSel secondary structure contents in relation to Dictionary of Secondary Structure of Proteins data. The BeStSel server is freely accessible at http://bestsel.elte.hu.

666 citations

Journal ArticleDOI
TL;DR: This review focuses on the influence of thermodynamic and kinetic factors on structural assembly and regulation based on different types of peptide building blocks, including aromatic dipeptides, amphiphilic peptides, polypeptide, and amyloid-relevant peptides.
Abstract: Self-assembling systems play a significant role in physiological functions and have therefore attracted tremendous attention due to their great potential for applications in energy, biomedicine and nanotechnology. Peptides, consisting of amino acids, are among the most popular building blocks and programmable molecular motifs. Nanostructures and materials assembled using peptides exhibit important potential for green-life new technology and biomedical applications mostly because of their bio-friendliness and reversibility. The formation of these ordered nanostructures pertains to the synergistic effect of various intermolecular non-covalent interactions, including hydrogen-bonding, π–π stacking, electrostatic, hydrophobic, and van der Waals interactions. Therefore, the self-assembly process is mainly driven by thermodynamics; however, kinetics is also a critical factor in structural modulation and function integration. In this review, we focus on the influence of thermodynamic and kinetic factors on structural assembly and regulation based on different types of peptide building blocks, including aromatic dipeptides, amphiphilic peptides, polypeptides, and amyloid-relevant peptides.

657 citations

13 Jul 2017
TL;DR: It is demonstrated that cryo-EM allows atomic characterization of amyloid filaments from patient-derived material, and pave the way for investigation of a range of neurodegenerative diseases.
Abstract: Alzheimer’s disease is the most common neurodegenerative disease, and there are no mechanism-based therapies. The disease is defined by the presence of abundant neurofibrillary lesions and neuritic plaques in the cerebral cortex. Neurofibrillary lesions comprise paired helical and straight tau filaments, whereas tau filaments with different morphologies characterize other neurodegenerative diseases. No high-resolution structures of tau filaments are available. Here we present cryo-electron microscopy (cryo-EM) maps at 3.4–3.5 A resolution and corresponding atomic models of paired helical and straight filaments from the brain of an individual with Alzheimer’s disease. Filament cores are made of two identical protofilaments comprising residues 306–378 of tau protein, which adopt a combined cross-β/β-helix structure and define the seed for tau aggregation. Paired helical and straight filaments differ in their inter-protofilament packing, showing that they are ultrastructural polymorphs. These findings demonstrate that cryo-EM allows atomic characterization of amyloid filaments from patient-derived material, and pave the way for investigation of a range of neurodegenerative diseases. High-resolution structures of tau filaments shed light on the ultrastructure of neurofibrillary lesions in Alzheimer’s disease. Alzheimer's disease is defined by the presence of abundant neurofibrillary lesions and neuritic plaques in the cerebral cortex. The lesions are made of paired helical and straight tau filaments (PHFs and SFs, respectively). Different tau filaments characterize other neurodegenerative diseases, suggesting that molecular conformers of aggregated tau underlie human tauopathies. No high-resolution structures of tau filaments are currently available. Here, Sjors Scheres and colleagues present cryo-electron microscopy (cryo-EM) maps at 3.5 A resolution and corresponding atomic models of PHFs and SFs from the brain of an individual with Alzheimer's disease. Their results show that cryo-EM enables atomic characterization of amyloid filaments from patient-derived material and could be used to study a range of neurodegenerative diseases.

652 citations

01 Apr 2019
TL;DR: In this paper, the structures of tau filaments from the brains of three individuals with chronic traumatic encephalopathy at resolutions down to 2.3 A were determined using cryo-electron microscopy, with a novel protofilament fold enclosing hydrophobic molecules.
Abstract: Chronic traumatic encephalopathy (CTE) is a neurodegenerative tauopathy that is associated with repetitive head impacts or exposure to blast waves. First described as punch-drunk syndrome and dementia pugilistica in retired boxers1–3, CTE has since been identified in former participants of other contact sports, ex-military personnel and after physical abuse4–7. No disease-modifying therapies currently exist, and diagnosis requires an autopsy. CTE is defined by an abundance of hyperphosphorylated tau protein in neurons, astrocytes and cell processes around blood vessels8,9. This, together with the accumulation of tau inclusions in cortical layers II and III, distinguishes CTE from Alzheimer’s disease and other tauopathies10,11. However, the morphologies of tau filaments in CTE and the mechanisms by which brain trauma can lead to their formation are unknown. Here we determine the structures of tau filaments from the brains of three individuals with CTE at resolutions down to 2.3 A, using cryo-electron microscopy. We show that filament structures are identical in the three cases but are distinct from those of Alzheimer’s and Pick’s diseases, and from those formed in vitro12–15. Similar to Alzheimer’s disease12,14,16–18, all six brain tau isoforms assemble into filaments in CTE, and residues K274–R379 of three-repeat tau and S305–R379 of four-repeat tau form the ordered core of two identical C-shaped protofilaments. However, a different conformation of the β-helix region creates a hydrophobic cavity that is absent in tau filaments from the brains of patients with Alzheimer’s disease. This cavity encloses an additional density that is not connected to tau, which suggests that the incorporation of cofactors may have a role in tau aggregation in CTE. Moreover, filaments in CTE have distinct protofilament interfaces to those of Alzheimer’s disease. Our structures provide a unifying neuropathological criterion for CTE, and support the hypothesis that the formation and propagation of distinct conformers of assembled tau underlie different neurodegenerative diseases. Cryo-electron microscopy structures of tau filaments from the brains of three individuals with chronic traumatic encephalopathy reveal distinct assembled tau conformers, with a novel protofilament fold enclosing hydrophobic molecules.

306 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aβ, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease, Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research.
Abstract: Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aβ, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.

300 citations