scispace - formally typeset
Search or ask a question
Author

Yuxiang Zhou

Other affiliations: Google
Bio: Yuxiang Zhou is an academic researcher from Imperial College London. The author has contributed to research in topics: Convolutional neural network & Reinforcement learning. The author has an hindex of 13, co-authored 25 publications receiving 909 citations. Previous affiliations of Yuxiang Zhou include Google.

Papers
More filters
Posted Content
TL;DR: A robust single-stage face detector, named RetinaFace, which performs pixel-wise face localisation on various scales of faces by taking advantages of joint extra-supervised and self-super supervised multi-task learning.
Abstract: Though tremendous strides have been made in uncontrolled face detection, accurate and efficient face localisation in the wild remains an open challenge. This paper presents a robust single-stage face detector, named RetinaFace, which performs pixel-wise face localisation on various scales of faces by taking advantages of joint extra-supervised and self-supervised multi-task learning. Specifically, We make contributions in the following five aspects: (1) We manually annotate five facial landmarks on the WIDER FACE dataset and observe significant improvement in hard face detection with the assistance of this extra supervision signal. (2) We further add a self-supervised mesh decoder branch for predicting a pixel-wise 3D shape face information in parallel with the existing supervised branches. (3) On the WIDER FACE hard test set, RetinaFace outperforms the state of the art average precision (AP) by 1.1% (achieving AP equal to 91.4%). (4) On the IJB-C test set, RetinaFace enables state of the art methods (ArcFace) to improve their results in face verification (TAR=89.59% for FAR=1e-6). (5) By employing light-weight backbone networks, RetinaFace can run real-time on a single CPU core for a VGA-resolution image. Extra annotations and code have been made available at: this https URL.

357 citations

Proceedings ArticleDOI
01 Jul 2017
TL;DR: A new supervision signal named marginal loss is proposed for deep face recognition that simultaneously minimises the intra-class variances as well as maximises the inter-class distances by focusing on the marginal samples.
Abstract: Convolutional neural networks have significantly boosted the performance of face recognition in recent years due to its high capacity in learning discriminative features. In order to enhance the discriminative power of the deeply learned features, we propose a new supervision signal named marginal loss for deep face recognition. Specifically, the marginal loss simultaneously minimises the intra-class variances as well as maximises the inter-class distances by focusing on the marginal samples. With the joint supervision of softmax loss and marginal loss, we can easily train a robust CNNs to obtain more discriminative deep features. Extensive experiments on several relevant face recognition benchmarks, Labelled Faces in the Wild (LFW), YouTube Faces (YTF), Cross-Age Celebrity Dataset (CACD), Age Database (AgeDB) and MegaFace Challenge, prove the effectiveness of the proposed marginal loss.

216 citations

Proceedings ArticleDOI
18 Jun 2018
TL;DR: In this paper, Li et al. proposed a framework for training deep convolutional neural network (DCNN) to complete the facial UV map extracted from in-the-wild images.
Abstract: Recently proposed robust 3D face alignment methods establish either dense or sparse correspondence between a 3D face model and a 2D facial image. The use of these methods presents new challenges as well as opportunities for facial texture analysis. In particular, by sampling the image using the fitted model, a facial UV can be created. Unfortunately, due to self-occlusion, such a UV map is always incomplete. In this paper, we propose a framework for training Deep Convolutional Neural Network (DCNN) to complete the facial UV map extracted from in-the-wild images. To this end, we first gather complete UV maps by fitting a 3D Morphable Model (3DMM) to various multiview image and video datasets, as well as leveraging on a new 3D dataset with over 3,000 identities. Second, we devise a meticulously designed architecture that combines local and global adversarial DCNNs to learn an identity-preserving facial UV completion model. We demonstrate that by attaching the completed UV to the fitted mesh and generating instances of arbitrary poses, we can increase pose variations for training deep face recognition/verification models, and minimise pose discrepancy during testing, which lead to better performance. Experiments on both controlled and in-the-wild UV datasets prove the effectiveness of our adversarial UV completion model. We achieve state-of-the-art verification accuracy, 94.05%, under the CFP frontal-profile protocol only by combining pose augmentation during training and pose discrepancy reduction during testing. We will release the first in-the-wild UV dataset (we refer as WildUV) that comprises of complete facial UV maps from 1,892 identities for research purposes.

167 citations

Journal ArticleDOI
TL;DR: This paper proposes the first, to the best of the knowledge, joint multi-view convolutional network to handle large pose variations across faces in-the-wild, and elegantly bridge face detection and facial landmark localization tasks.
Abstract: The de facto algorithm for facial landmark estimation involves running a face detector with a subsequent deformable model fitting on the bounding box. This encompasses two basic problems: 1) the detection and deformable fitting steps are performed independently, while the detector might not provide the best-suited initialization for the fitting step, and 2) the face appearance varies hugely across different poses, which makes the deformable face fitting very challenging and thus distinct models have to be used (e.g., one for profile and one for frontal faces). In this paper, we propose the first, to the best of our knowledge, joint multi-view convolutional network to handle large pose variations across faces in-the-wild, and elegantly bridge face detection and facial landmark localization tasks. The existing joint face detection and landmark localization methods focus only on a very small set of landmarks. By contrast, our method can detect and align a large number of landmarks for semi-frontal (68 landmarks) and profile (39 landmarks) faces. We evaluate our model on a plethora of datasets including the standard static image datasets such as IBUG, 300W, COFW, and the latest Menpo Benchmark for both semi-frontal and profile faces. A significant improvement over the state-of-the-art methods on deformable face tracking is witnessed on the 300VW benchmark. We also demonstrate state-of-the-art results for face detection on FDDB and MALF datasets.

78 citations

Proceedings ArticleDOI
01 May 2018
TL;DR: A Cascade Multi-view Hourglass Model for 3D face alignment is proposed, where the first Hourglass model is explored to jointly predict semi-frontal and profile 2D facial landmarks, and after removing spatial transformations, another Hour glass model is employed to estimate the 3D facial shapes.
Abstract: Estimating the 3D facial landmarks from a 2D image remains a challenging problem. Even though state-of-the-art 2D alignment methods are able to predict accurate landmarks for semi-frontal faces, the majority of them fail to provide semantically consistent landmarks for profile faces. A de facto solution to this problem is through 3D face alignment that preserves correspondence across different poses. In this paper, we proposed a Cascade Multi-view Hourglass Model for 3D face alignment, where the first Hourglass model is explored to jointly predict semi-frontal and profile 2D facial landmarks, after removing spatial transformations, another Hourglass model is employed to estimate the 3D facial shapes. To improve the capacity without sacrificing the computational complexity, the original residual bottleneck block in the Hourglass model is replaced by a parallel, multi-scale inception-resnet block. Extensive experiments on two challenging 3D face alignment datasets, AFLW2000-3D and Menpo-3D, show the robustness of the proposed method under continuous pose changes.

60 citations


Cited by
More filters
Proceedings ArticleDOI
15 Jun 2019
TL;DR: This paper presents arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks, and shows that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead.
Abstract: One of the main challenges in feature learning using Deep Convolutional Neural Networks (DCNNs) for large-scale face recognition is the design of appropriate loss functions that can enhance the discriminative power. Centre loss penalises the distance between deep features and their corresponding class centres in the Euclidean space to achieve intra-class compactness. SphereFace assumes that the linear transformation matrix in the last fully connected layer can be used as a representation of the class centres in the angular space and therefore penalises the angles between deep features and their corresponding weights in a multiplicative way. Recently, a popular line of research is to incorporate margins in well-established loss functions in order to maximise face class separability. In this paper, we propose an Additive Angular Margin Loss (ArcFace) to obtain highly discriminative features for face recognition. The proposed ArcFace has a clear geometric interpretation due to its exact correspondence to geodesic distance on a hypersphere. We present arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks which includes a new large-scale image database with trillions of pairs and a large-scale video dataset. We show that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead. To facilitate future research, the code has been made available.

4,312 citations

Proceedings Article
01 Jan 1999

2,010 citations

Proceedings ArticleDOI
Hao Wang1, Yitong Wang1, Zhou Zheng1, Ji Xing1, Dihong Gong1, Jingchao Zhou1, Zhifeng Li1, Wei Liu1 
18 Jun 2018
TL;DR: In this article, the authors proposed a large margin cosine loss (LMCL), which normalizes both features and weight vectors to remove radial variations, based on which a cosine margin term is introduced to further maximize the decision margin in the angular space.
Abstract: Face recognition has made extraordinary progress owing to the advancement of deep convolutional neural networks (CNNs). The central task of face recognition, including face verification and identification, involves face feature discrimination. However, the traditional softmax loss of deep CNNs usually lacks the power of discrimination. To address this problem, recently several loss functions such as center loss, large margin softmax loss, and angular softmax loss have been proposed. All these improved losses share the same idea: maximizing inter-class variance and minimizing intra-class variance. In this paper, we propose a novel loss function, namely large margin cosine loss (LMCL), to realize this idea from a different perspective. More specifically, we reformulate the softmax loss as a cosine loss by L2 normalizing both features and weight vectors to remove radial variations, based on which a cosine margin term is introduced to further maximize the decision margin in the angular space. As a result, minimum intra-class variance and maximum inter-class variance are achieved by virtue of normalization and cosine decision margin maximization. We refer to our model trained with LMCL as CosFace. Extensive experimental evaluations are conducted on the most popular public-domain face recognition datasets such as MegaFace Challenge, Youtube Faces (YTF) and Labeled Face in the Wild (LFW). We achieve the state-of-the-art performance on these benchmarks, which confirms the effectiveness of our proposed approach.

1,879 citations

Posted Content
TL;DR: The superiority of the proposed HRNet in a wide range of applications, including human pose estimation, semantic segmentation, and object detection, is shown, suggesting that the HRNet is a stronger backbone for computer vision problems.
Abstract: High-resolution representations are essential for position-sensitive vision problems, such as human pose estimation, semantic segmentation, and object detection. Existing state-of-the-art frameworks first encode the input image as a low-resolution representation through a subnetwork that is formed by connecting high-to-low resolution convolutions \emph{in series} (e.g., ResNet, VGGNet), and then recover the high-resolution representation from the encoded low-resolution representation. Instead, our proposed network, named as High-Resolution Network (HRNet), maintains high-resolution representations through the whole process. There are two key characteristics: (i) Connect the high-to-low resolution convolution streams \emph{in parallel}; (ii) Repeatedly exchange the information across resolutions. The benefit is that the resulting representation is semantically richer and spatially more precise. We show the superiority of the proposed HRNet in a wide range of applications, including human pose estimation, semantic segmentation, and object detection, suggesting that the HRNet is a stronger backbone for computer vision problems. All the codes are available at~{\url{this https URL}}.

1,278 citations

Posted Content
TL;DR: This article proposed an additive angular margin loss (ArcFace) to obtain highly discriminative features for face recognition, which has a clear geometric interpretation due to the exact correspondence to the geodesic distance on the hypersphere.
Abstract: One of the main challenges in feature learning using Deep Convolutional Neural Networks (DCNNs) for large-scale face recognition is the design of appropriate loss functions that enhance discriminative power. Centre loss penalises the distance between the deep features and their corresponding class centres in the Euclidean space to achieve intra-class compactness. SphereFace assumes that the linear transformation matrix in the last fully connected layer can be used as a representation of the class centres in an angular space and penalises the angles between the deep features and their corresponding weights in a multiplicative way. Recently, a popular line of research is to incorporate margins in well-established loss functions in order to maximise face class separability. In this paper, we propose an Additive Angular Margin Loss (ArcFace) to obtain highly discriminative features for face recognition. The proposed ArcFace has a clear geometric interpretation due to the exact correspondence to the geodesic distance on the hypersphere. We present arguably the most extensive experimental evaluation of all the recent state-of-the-art face recognition methods on over 10 face recognition benchmarks including a new large-scale image database with trillion level of pairs and a large-scale video dataset. We show that ArcFace consistently outperforms the state-of-the-art and can be easily implemented with negligible computational overhead. We release all refined training data, training codes, pre-trained models and training logs, which will help reproduce the results in this paper.

1,122 citations