scispace - formally typeset
Search or ask a question
Author

Yuxin Liu

Bio: Yuxin Liu is an academic researcher from Nankai University. The author has contributed to research in topics: Lipogenesis & Liver X receptor. The author has an hindex of 1, co-authored 2 publications receiving 4 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: CDDP can protect against myocardial injuries in different models, suggesting its potential application for HF treatment, and shows that CDDP cannot protect against oxygen-glucose deprivation-induced injuries.

9 citations

Journal ArticleDOI
TL;DR: This study demonstrates that D-Nap-GFFY-T317 inhibits lung tumor growth without adverse effects on the liver, indicating the hydrogel-encapsulated LXR ligand might be a novel therapy for tumor treatment.
Abstract: Background and purpose: Activation of liver X receptor (LXR) by its ligand T0901317 (T317) enhances interferon-γ (IFNγ) production to inhibit tumor growth. However, induction of severe hypertriglyceridemia and fatty liver by T317 limits its application. The naphthylacetic acid modified D-enantiomeric-glycine-phenylalanine-phenylalanine-tyrosine (D-Nap-GFFY) can form a nanofiber hydrogel which is selectively taken up by antigen-presenting cells (APCs). In this study, we determined if D-Nap-GFFY-encapsulated T317 (D-Nap-GFFY-T317) can potently inhibit tumor growth while having no adverse lipogenic effects on the liver. Methods: We prepared D-Nap-GFFY-T317 nanofiber hydrogel and subcutaneously injected it into IFNγ deficient (IFNγ-/-) and wild-type (WT) mice with lung carcinoma, either inoculated LLC1 cells or urethane-induced carcinoma. Mice received oral T317 administration were used for comparison. Effects of treatment on tumor growth, lipogenesis and involved mechanisms were investigated. Results: Compared with T317 oral administration, injection of D-Nap-GFFY-T317 more potently inhibited LLC1 tumor growth in mice. The inhibition was dependent on LXR-activated IFNγ expression in APCs. D-Nap-GFFY-T317 increased M1 while reducing M2 type macrophages in tumors. Associated with activation of IFNγ expression, D-Nap-GFFY-T317 enhanced dendritic cell maturation and infiltration into tumors, increased CD3+/CD8+ cells in tumors, and inhibited tumor angiogenesis. Similarly, D-Nap-GFFY-T317 more potently inhibited growth of urethane-induced lung carcinomas than T317 oral administration. In these two tumor models, T317 oral administration, but not D-Nap-GFFY-T317 injection, activated hepatic lipogenesis and induced fatty liver. Conclusion: Our study demonstrates that D-Nap-GFFY-T317 inhibits lung tumor growth without adverse effects on the liver, indicating the hydrogel-encapsulated LXR ligand might be a novel therapy for tumor treatment.

9 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provided a detailed review on the current understanding of the pathological mechanisms behind the well-known Dox-induced cardiotoxicity and provided some of the most plausible pharmacological strategies which have been tested against doxorubicin-induced Cardiotoxicity.

172 citations

Journal ArticleDOI
TL;DR: The research provides a viable strategy to utilize multiple enzymes in cancerous cells for regulation of intracellular self‐assembly, which can be expanded to design smart soft materials responsive to multiple biologically relevant biomolecules for enhanced therapeutic efficacy.

17 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated whether metformin could protect against atherogenesis via enhancing autophagy in high fat diet (HFD)-induced apoE-/- mice.

16 citations

Journal ArticleDOI
TL;DR: In this paper, a nanofibre hydrogel (D-Nap-GFFY-T0901317) was used to encapsulate liver X receptors (LXRs) and determined its effect on atherosclerosis, hepatic lipogenesis and underlying mechanisms involved.
Abstract: Background and purpose Targeting macrophage but not hepatocyte liver X receptors (LXRs) can reduce atherosclerosis without effect on hepatic lipogenesis. In this study, we encapsulated LXR ligands with D-Nap-GFFY to form a nanofibre hydrogel (D-Nap-GFFY-T0901317 or GFFY-T0901317) and determined its effect on atherosclerosis, hepatic lipogenesis and the underlying mechanisms involved. Experimental approach D-Nap-GFFY-T0901317 was subcutaneously injected to proatherogenic diet-fed apoE-deficient (Apoe-/- ) mice, followed by determination of the development of atherosclerosis, liver steatosis and the involved mechanisms, with comparison of T0901317 oral administration. Key results Subcutaneous injection of D-Nap-GFFY-T0901317 to Apoe-/- mice inhibited atherosclerosis at a comparable level as T0901317 oral administration without effect on hepatic lipogenesis. More importantly, D-Nap-GFFY-T0901317 regressed the advanced lesions. In arterial wall, D-Nap-GFFY-T0901317 reduced macrophage/foam cells, necrotic cores and calcification and increased collagen content. It activated expression of ABCA1/G1 and smooth muscle α-actin, while inhibiting expression of intracellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1). D-Nap-GFFY-T0901317 also reduced serum pro-inflammatory cytokines and facilitated Kupffer cell M2 polarization. Mechanistically, D-Nap-GFFY-T0901317 was selectively taken up by macrophages but not hepatocytes, resulting in activation of macrophage ABCA1/G1 expression, while having no effect on lipogenic genes in hepatocytes. Moreover, the selective uptake of D-Nap-GFFY-T0901317 by macrophages was mainly completed in a scavenger receptor class A-dependent manner. Conclusion and implications Our study demonstrates that D-Nap-GFFY-T0901317 reduces atherosclerosis without effect on hepatic lipogenesis by targeting macrophage LXRs selectively, indicating its potential application for atherosclerosis treatment.

12 citations

Journal ArticleDOI
TL;DR: The related mechanisms of DOX-induced cardiac mitochondrial bioenergetics disorders reported in recent years are summarized, including mitochondrial substrate metabolism, the mitochondrial respiratory chain, myocardial ATP storage and utilization, and other mechanisms affecting mitochondrial bioenersgetics.
Abstract: Doxorubicin (DOX) is an anthracycline chemotherapy drug, which is indispensable in antitumor therapy. However, its subsequent induction of cardiovascular disease (CVD) has become the primary cause of mortality in cancer survivors. Accumulating evidence has demonstrated that cardiac mitochondrial bioenergetics changes have become a significant marker for doxorubicin-induced cardiotoxicity (DIC). Here, we mainly summarize the related mechanisms of DOX-induced cardiac mitochondrial bioenergetics disorders reported in recent years, including mitochondrial substrate metabolism, the mitochondrial respiratory chain, myocardial ATP storage and utilization, and other mechanisms affecting mitochondrial bioenergetics. In addition, intervention for DOX-induced cardiac mitochondrial bioenergetics disorders using chemical drugs and traditional herbal medicine is also summarized, which will provide a comprehensive process to study and develop more appropriate therapeutic strategies for DIC.

4 citations