scispace - formally typeset
Search or ask a question
Author

Yuying Yan

Other affiliations: Siemens, Chinese Ministry of Education, University of Surrey  ...read more
Bio: Yuying Yan is an academic researcher from University of Nottingham. The author has contributed to research in topics: Heat transfer & Lattice Boltzmann methods. The author has an hindex of 44, co-authored 334 publications receiving 7349 citations. Previous affiliations of Yuying Yan include Siemens & Chinese Ministry of Education.


Papers
More filters
Journal ArticleDOI
TL;DR: The most recent progress in preparing manmade superhydrophobic surfaces through a variety of methodologies, particularly within the past several years, are reviewed and the fundamental theories of wetting phenomena related to superhydphobic surfaces are reviewed.

878 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a review on two aspects that are battery thermal model development and thermal management strategies, and discuss thermal effects of lithium-ion batteries in terms of thermal runaway and response under cold temperatures.
Abstract: Power train electrification is promoted as a potential alternative to reduce carbon intensity of transportation. Lithium-ion batteries are found to be suitable for hybrid electric vehicles (HEVs) and pure electric vehicles (EVs), and temperature control on lithium batteries is vital for long-term performance and durability. Unfortunately, battery thermal management (BTM) has not been paid close attention partly due to poor understanding of battery thermal behaviour. Cell performance change dramatically with temperature, but it improves with temperature if a suitable operating temperature window is sustained. This paper provides a review on two aspects that are battery thermal model development and thermal management strategies. Thermal effects of lithium-ion batteries in terms of thermal runaway and response under cold temperatures will be studied, and heat generation methods are discussed with aim of performing accurate battery thermal analysis. In addition, current BTM strategies utilised by automotive suppliers will be reviewed to identify the imposing challenges and critical gaps between research and practice. Optimising existing BTMs and exploring new technologies to mitigate battery thermal impacts are required, and efforts in prioritising BTM should be made to improve the temperature uniformity across the battery pack, prolong battery lifespan, and enhance the safety of large packs.

628 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive review of thermoelectric (TE) technology encompassing the materials, applications, modelling techniques and performance improvement is carried out, including output power conditioning techniques.
Abstract: Thermoelectric (TE) technology is regarded as alternative and environmentally friendly technology for harvesting and recovering heat which is directly converted into electrical energy using thermoelectric generators (TEG). Conversely, Peltier coolers and heaters are utilized to convert electrical energy into heat energy for cooling and heating purposes The main challenge lying behind the TE technology is the low efficiency of these devices mainly due to low figure of merit (ZT) of the materials used in making them as well as improper setting of the TE systems. The objective of this work is to carry out a comprehensive review of TE technology encompassing the materials, applications, modelling techniques and performance improvement. The paper has covered a wide range of topics related to TE technology subject area including the output power conditioning techniques. The review reveals some important critical aspects regarding TE device application and performance improvement. It is observed that the intensified research into TE technology has led to an outstanding increase in ZT, rendering the use TE devices in diversified application a reality. Not only does the TE material research and TE device geometrical adjustment contributed to TE device performance improvement, but also the use of advanced TE mathematical models which have facilitated appropriate segmentation TE modules using different materials and design of integrated TE devices. TE devices are observed to have booming applications in cooling, heating, electric power generation as well as hybrid applications. With the generation of electric energy using TEG, not only does the waste heat provide heat source but also other energy sources like solar, geothermal, biomass, infra-red radiation have gained increased utilization in TE based systems. However, the main challenge remains in striking the balance between the conflicting parameters; ZT and power factor, when designing and optimizing advanced TE materials. Hence more research is necessary to overcome this and other challenge so that the performance TE device can be improved further.

398 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the great potential of achieving both environmental and economic benefits by exclusively utilizing thermoelectric applications in different areas and discuss the difficulties in terms of the commercialisation of advanced materials.
Abstract: In recent years, thermoelectric (TE) devices have emerged as promising alternative environmental friendly applications for heat pumps and power generators since the environmental issues such as the global warming and the limitations of energy resources gradually drew worldwide attentions. Due to the green feature and distinct advantages, the thermoelectric technology have been applied to different areas in an effort of designing simple, compact and environmental friendly systems. The applied areas are extended from the earliest application on kerosene lamp to aerospace applications, transportation tools, industrial utilities, medical services, electronic devices and temperature detecting and measuring facilities. The application potentials of TE in directly conversing thermal energy into electrical power have been identified, especially for where the cost of thermal energy input need not to be considered, such as waste heat utilization, in the light of the present low efficiency of thermoelectric conversion. The capability of TE in producing thermal energy (in terms of cooling or heating) with the use of electrical power is also well identified. This paper reviews the status of the material development and thermoelectric applications in different areas and discusses the difficulties in terms of the commercialisations of advanced materials. Other than this, the main purpose of this paper is to present the great potential of achieving both environmental and economic benefits by exclusively utilizing thermoelectric applications in different areas. It also comes to the conclusion that the thermoelectric applications with the current conversion efficiency are economically and technically practical for micro/small applications. However, it would be transformed to a more significant green energy solution for improving the current environment and energy issues by using medium/large scale thermoelectric applications when the thermoelectric materials with a figure-of-merit over 2 come into commercial practice.

379 citations

Journal ArticleDOI
TL;DR: In this article, the phase change heat transfer in porous phase change materials (ss-PCMs) is discussed and a review of the recent experimental and numerical investigations is presented, which shows that the pore-scale simulation can provide extra flow and heat transfer characteristics in pores, exhibiting great potential for the simulation of mesoporous, microporous and hierarchical porous materials.
Abstract: Latent heat thermal energy storage (LHTES) uses phase change materials (PCMs) to store and release heat, and can effectively address the mismatch between energy supply and demand. However, it suffers from low thermal conductivity and the leakage problem. One of the solutions is integrating porous supports and PCMs to fabricate shape-stabilized phase change materials (ss-PCMs). The phase change heat transfer in porous ss-PCMs is of fundamental importance for determining thermal-fluidic behaviours and evaluating LHTES system performance. This paper reviews the recent experimental and numerical investigations on phase change heat transfer in porous ss-PCMs. Materials, methods, apparatuses and significant outcomes are included in the section of experimental studies and it is found that paraffin and metal foam are the most used PCM and porous support respectively in the current researches. Numerical advances are reviewed from the aspect of different simulation methods. Compared to representative elementary volume (REV)-scale simulation, the pore-scale simulation can provide extra flow and heat transfer characteristics in pores, exhibiting great potential for the simulation of mesoporous, microporous and hierarchical porous materials. Moreover, there exists a research gap between phase change heat transfer and material preparation. Finally, this review outlooks the future research topics of phase change heat transfer in porous ss-PCMs.

259 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

01 Jan 2007
TL;DR: The Third edition of the Kirk-Othmer encyclopedia of chemical technology as mentioned in this paper was published in 1989, with the title "Kirk's Encyclopedia of Chemical Technology: Chemical Technology".
Abstract: 介绍了Kirk—Othmer Encyclopedia of Chemical Technology(化工技术百科全书)(第五版)电子图书网络版数据库,并对该数据库使用方法和检索途径作出了说明,且结合实例简单地介绍了该数据库的检索方法。

2,666 citations

Journal ArticleDOI
TL;DR: It is expected that special wettability stimulated oil/water separation materials can achieve industrial scale production and be put into use for oil spills and industrial oily wastewater treatment in the near future.
Abstract: Oil spills and industrial organic pollutants have induced severe water pollution and threatened every species in the ecological system. To deal with oily water, special wettability stimulated materials have been developed over the past decade to separate oil-and-water mixtures. Basically, synergy between the surface chemical composition and surface topography are commonly known as the key factors to realize the opposite wettability to oils and water and dominate the selective wetting or absorption of oils/water. In this review, we mainly focus on the development of materials with either super-lyophobicity or super-lyophilicity properties in oil/water separation applications where they can be classified into four kinds as follows (in terms of the surface wettability of water and oils): (i) superhydrophobic and superoleophilic materials, (ii) superhydrophilic and under water superoleophobic materials, (iii) superhydrophilic and superoleophobic materials, and (iv) smart oil/water separation materials with switchable wettability. These materials have already been applied to the separation of oil-and-water mixtures: from simple oil/water layered mixtures to oil/water emulsions (including oil-in-water emulsions and water-in-oil emulsions), and from non-intelligent materials to intelligent materials. Moreover, they also exhibit high absorption capacity or separation efficiency and selectivity, simple and fast separation/absorption ability, excellent recyclability, economical efficiency and outstanding durability under harsh conditions. Then, related theories are proposed to understand the physical mechanisms that occur during the oil/water separation process. Finally, some challenges and promising breakthroughs in this field are also discussed. It is expected that special wettability stimulated oil/water separation materials can achieve industrial scale production and be put into use for oil spills and industrial oily wastewater treatment in the near future.

1,261 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive review of the battery state of charge estimation and its management system for the sustainable future electric vehicles (EVs) applications is presented, which can guarantee a reliable and safe operation and assess the battery SOC.
Abstract: Due to increasing concerns about global warming, greenhouse gas emissions, and the depletion of fossil fuels, the electric vehicles (EVs) receive massive popularity due to their performances and efficiencies in recent decades. EVs have already been widely accepted in the automotive industries considering the most promising replacements in reducing CO2 emissions and global environmental issues. Lithium-ion batteries have attained huge attention in EVs application due to their lucrative features such as lightweight, fast charging, high energy density, low self-discharge and long lifespan. This paper comprehensively reviews the lithium-ion battery state of charge (SOC) estimation and its management system towards the sustainable future EV applications. The significance of battery management system (BMS) employing lithium-ion batteries is presented, which can guarantee a reliable and safe operation and assess the battery SOC. The review identifies that the SOC is a crucial parameter as it signifies the remaining available energy in a battery that provides an idea about charging/discharging strategies and protect the battery from overcharging/over discharging. It is also observed that the SOC of the existing lithium-ion batteries have a good contribution to run the EVs safely and efficiently with their charging/discharging capabilities. However, they still have some challenges due to their complex electro-chemical reactions, performance degradation and lack of accuracy towards the enhancement of battery performance and life. The classification of the estimation methodologies to estimate SOC focusing with the estimation model/algorithm, benefits, drawbacks and estimation error are extensively reviewed. The review highlights many factors and challenges with possible recommendations for the development of BMS and estimation of SOC in next-generation EV applications. All the highlighted insights of this review will widen the increasing efforts towards the development of the advanced SOC estimation method and energy management system of lithium-ion battery for the future high-tech EV applications.

1,150 citations

Journal Article
TL;DR: The International Nanofluid Property Benchmark Exercise (INPBE) as discussed by the authors was held in 1998, where the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or "nanofluids" was measured by over 30 organizations worldwide, using a variety of experimental approaches, including the transient hot wire method, steady state methods, and optical methods.
Abstract: This article reports on the International Nanofluid Property Benchmark Exercise, or INPBE, in which the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or “nanofluids,” was measured by over 30 organizations worldwide, using a variety of experimental approaches, including the transient hot wire method, steady-state methods, and optical methods. The nanofluids tested in the exercise were comprised of aqueous and nonaqueous basefluids, metal and metal oxide particles, near-spherical and elongated particles, at low and high particle concentrations. The data analysis reveals that the data from most organizations lie within a relatively narrow band (±10% or less) about the sample average with only few outliers. The thermal conductivity of the nanofluids was found to increase with particle concentration and aspect ratio, as expected from classical theory. There are (small) systematic differences in the absolute values of the nanofluid thermal conductivity among the various experimental approaches; however, such differences tend to disappear when the data are normalized to the measured thermal conductivity of the basefluid. The effective medium theory developed for dispersed particles by Maxwell in 1881 and recently generalized by Nan et al. [J. Appl. Phys. 81, 6692 (1997)], was found to be in good agreement with the experimental data, suggesting that no anomalous enhancement of thermal conductivity was achieved in the nanofluids tested in this exercise.

881 citations