scispace - formally typeset
Search or ask a question
Author

Yuzuru Kanakura

Bio: Yuzuru Kanakura is an academic researcher from Osaka University. The author has contributed to research in topics: Haematopoiesis & Stem cell. The author has an hindex of 63, co-authored 412 publications receiving 20176 citations. Previous affiliations of Yuzuru Kanakura include Hyogo College of Medicine & University of Jena.


Papers
More filters
Journal ArticleDOI
23 Jan 1998-Science
TL;DR: Sequencing of c-kit complementary DNA from five GISTs revealed mutations in the region between the transmembrane and tyrosine kinase domains, suggesting that the mutations contribute to tumor development.
Abstract: Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors in the human digestive tract, but their molecular etiology and cellular origin are unknown. Sequencing of c-kit complementary DNA, which encodes a proto-oncogenic receptor tyrosine kinase (KIT), from five GISTs revealed mutations in the region between the transmembrane and tyrosine kinase domains. All of the corresponding mutant KIT proteins were constitutively activated without the KIT ligand, stem cell factor (SCF). Stable transfection of the mutant c-kit complementary DNAs induced malignant transformation of Ba/F3 murine lymphoid cells, suggesting that the mutations contribute to tumor development. GISTs may originate from the interstitial cells of Cajal (ICCs) because the development of ICCs is dependent on the SCF-KIT interaction and because, like GISTs, these cells express both KIT and CD34.

4,311 citations

Journal ArticleDOI
26 Jun 1997-Nature
TL;DR: A new SH2-domain-containing protein is isolated, JAB, which is a JAK-binding protein that interacts with the Jak2 tyrosine-kinase JH1 domain, and JAB and CIS appear to function as negative regulators in the JAK signalling pathway.
Abstract: The proliferation and differentiation of cells of many lineages are regulated by secreted proteins known as cytokines. Cytokines exert their biological effect through binding to cell-surface receptors that are associated with one or more members of the JAK family of cytoplasmic tyrosine kinases. Cytokine-induced receptor dimerization leads to the activation of JAKs, rapid tyrosine-phosphorylation of the cytoplasmic domains, and subsequent recruitment of various signalling proteins, including members of the STAT family of transcription factors, to the receptor complex. Using the yeast two-hybrid system, we have now isolated a new SH2-domain-containing protein, JAB, which is a JAK-binding protein that interacts with the Jak2 tyrosine-kinase JH1 domain. JAB is structurally related to CIS, a cytokine-inducible SH2 protein. Interaction of JAB with Jak1, Jak2 or Jak3 markedly reduces their tyrosine-kinase activity and suppresses the tyrosine-phosphorylation and activation of STATs. JAB and CIS appear to function as negative regulators in the JAK signalling pathway.

1,436 citations

Journal ArticleDOI
15 Oct 2005-Blood
TL;DR: Hemoglobin, albumin, and total cholesterol levels, high-density lipoprotein cholesterol values, and body mass index all increased significantly, and fatigue diminished, in patients with MCD.

701 citations

Journal ArticleDOI
TL;DR: Familial gastrointestinal stromal tumours with germline mutation of the KIT gene is reported: affected members all have a KIT mutation occurring between the transmembrane and tyrosine kinase domains, which is also the region where mutations have been found in solitary GISTs
Abstract: nature genetics volume 19 august 1998 323 Gastrointestinal stromal tumour (GIST) is the most common mesenchymal tumour of the human gastrointestinal tract. Most GISTs are solitary, and gain-offunction mutations of the KIT protooncogene have been found in these tumours1. We report here a family with multiple GISTs: affected members all have a KIT mutation occurring between the transmembrane and tyrosine kinase domains, which is also the region where mutations have been found in solitary GISTs (ref. 1). The KIT mutation in this family was detected not only in tumours but also in leukocytes, indicating that GISTs constitute a familial cancer syndrome2. Development of multiple GISTs was found in a 60-year-old Japanese woman (Fig. 1a, case 5). Her nephew (case 10) also suffered from multiple benign GISTs. Analysis of the family pedigree revealed many family members suffering from symptoms attributable to development of multiple GISTs (Fig. 1a), including case 9 (a niece of case 5) who underwent surgery for benign and malignant GISTs. The benign GISTs obtained from cases 5, 9 and 10, and the malignant GIST from case 9, all expressed the KIT protein (Fig. 1b–e). DNA was extracted from paraffin-embedded specimens of the tumours3, and the mutation was investigated using single-strand conformation polymorphism analysis4 (SSCP). SSCP of tumours from cases 5 and 10 showed wild-type and mutant bands at exon 11 (Fig. 1f). Direct sequencing of the mutant bands of exon 11 showed deletion of one of two consecutive valine residues (codon 559 and 560, GTTGTT) which are located between the transmembrane and tyrosine kinase domains. Unfortunately, DNA samples suitable for SSCP and direct sequencing were not obtained from tumours of case 9. Next, we obtained DNA from peripheral leukocytes of cases 5 and 10 and their family members. The valine deletion was detected in leukocyte DNA from cases 5, 10 and 15, but not in DNA from other family members. Case 15 is 22 years old and has so far had no abdominal symptoms. We investigated the function of the mutant KIT protein by introducing an analogous mutation into mouse Kit cDNA and transfecting it into the interleukin-3 (IL-3)-dependent Ba/F3 mouse lymphoid cell line1,5–7. Evidence was found for the constitutive phosphorylation and kinase Familial gastrointestinal stromal tumours with germline mutation of the KIT gene

547 citations

Journal ArticleDOI
TL;DR: Cell-depleting anti-CCR4 mAb therapy is instrumental for evoking and enhancing tumor immunity in humans via selectively removing effector-type FOXP3+ Treg cells by selectively depleting eTreg cells.
Abstract: CD4+ Treg cells expressing the transcription factor FOXP3 (forkhead box P3) are abundant in tumor tissues and appear to hinder the induction of effective antitumor immunity. A substantial number of T cells, including Treg cells, in tumor tissues and peripheral blood express C-C chemokine receptor 4 (CCR4). Here we show that CCR4 was specifically expressed by a subset of terminally differentiated and most suppressive CD45RA−FOXP3hiCD4+ Treg cells [designated effector Treg (eTreg) cells], but not by CD45RA+FOXP3loCD4+ naive Treg cells, in peripheral blood of healthy individuals and cancer patients. In melanoma tissues, CCR4+ eTreg cells were predominant among tumor-infiltrating FOXP3+ T cells and much higher in frequency compared with those in peripheral blood. With peripheral blood lymphocytes from healthy individuals and melanoma patients, ex vivo depletion of CCR4+ T cells and subsequent in vitro stimulation of the depleted cell population with the cancer/testis antigen NY-ESO-1 efficiently induced NY-ESO-1–specific CD4+ T cells. Nondepletion failed in the induction. The magnitude of the responses was comparable with total removal of FOXP3+ Treg cells by CD25+ T-cell depletion. CCR4+ T-cell depletion also augmented in vitro induction of NY-ESO-1–specific CD8+ T cells in melanoma patients. Furthermore, in vivo administration of anti-CCR4 mAb markedly reduced the eTreg-cell fraction and augmented NY-ESO-1–specific CD8+ T-cell responses in an adult T-cell leukemia-lymphoma patient whose leukemic cells expressed NY-ESO-1. Collectively, these findings indicate that anti-CCR4 mAb treatment is instrumental for evoking and augmenting antitumor immunity in cancer patients by selectively depleting eTreg cells.

543 citations


Cited by
More filters
Journal ArticleDOI
23 Jan 1998-Science
TL;DR: Sequencing of c-kit complementary DNA from five GISTs revealed mutations in the region between the transmembrane and tyrosine kinase domains, suggesting that the mutations contribute to tumor development.
Abstract: Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors in the human digestive tract, but their molecular etiology and cellular origin are unknown. Sequencing of c-kit complementary DNA, which encodes a proto-oncogenic receptor tyrosine kinase (KIT), from five GISTs revealed mutations in the region between the transmembrane and tyrosine kinase domains. All of the corresponding mutant KIT proteins were constitutively activated without the KIT ligand, stem cell factor (SCF). Stable transfection of the mutant c-kit complementary DNAs induced malignant transformation of Ba/F3 murine lymphoid cells, suggesting that the mutations contribute to tumor development. GISTs may originate from the interstitial cells of Cajal (ICCs) because the development of ICCs is dependent on the SCF-KIT interaction and because, like GISTs, these cells express both KIT and CD34.

4,311 citations

Journal ArticleDOI
TL;DR: The Janus kinases and signal transducers and activators of transcription, and many of the interferon-induced proteins, play important alternative roles in cells, raising interesting questions as to how the responses to the interFERons intersect with more general aspects of cellular physiology and how the specificity of cytokine responses is maintained.
Abstract: Interferons play key roles in mediating antiviral and antigrowth responses and in modulating immune response. The main signaling pathways are rapid and direct. They involve tyrosine phosphorylation and activation of signal transducers and activators of transcription factors by Janus tyrosine kinases at the cell membrane, followed by release of signal transducers and activators of transcription and their migration to the nucleus, where they induce the expression of the many gene products that determine the responses. Ancillary pathways are also activated by the interferons, but their effects on cell physiology are less clear. The Janus kinases and signal transducers and activators of transcription, and many of the interferon-induced proteins, play important alternative roles in cells, raising interesting questions as to how the responses to the interferons intersect with more general aspects of cellular physiology and how the specificity of cytokine responses is maintained.

4,026 citations

Journal ArticleDOI
17 May 2001-Nature
TL;DR: How oncogenic conversion of protein kinases results from perturbation of the normal autoinhibitory constraints on kinase activity is emphasized and an update is provided on the role of deregulated PI(3)K/Akt and mammalian target of rapamycin/p70S6K signalling in human malignancies.
Abstract: Protein-tyrosine kinases (PTKs) are important regulators of intracellular signal-transduction pathways mediating development and multicellular communication in metazoans Their activity is normally tightly controlled and regulated Perturbation of PTK signalling by mutations and other genetic alterations results in deregulated kinase activity and malignant transformation The lipid kinase phosphoinositide 3-OH kinase (PI(3)K) and some of its downstream targets, such as the protein-serine/threonine kinases Akt and p70 S6 kinase (p70S6K), are crucial effectors in oncogenic PTK signalling This review emphasizes how oncogenic conversion of protein kinases results from perturbation of the normal autoinhibitory constraints on kinase activity and provides an update on our knowledge about the role of deregulated PI(3)K/Akt and mammalian target of rapamycin/p70S6K signalling in human malignancies

3,691 citations

Journal ArticleDOI
TL;DR: The current understanding of IFN‐γ ligand, receptor, ignal transduction, and cellular effects with a focus on macrophage responses and to a lesser extent, responses from other cell types that influence macrophages function during infection are reviewed.
Abstract: Interferon-gamma (IFN-gamma) coordinates a diverse array of cellular programs through transcriptional regulation of immunologically relevant genes. This article reviews the current understanding of IFN-gamma ligand, receptor, signal transduction, and cellular effects with a focus on macrophage responses and to a lesser extent, responses from other cell types that influence macrophage function during infection. The current model for IFN-gamma signal transduction is discussed, as well as signal regulation and factors conferring signal specificity. Cellular effects of IFN-gamma are described, including up-regulation of pathogen recognition, antigen processing and presentation, the antiviral state, inhibition of cellular proliferation and effects on apoptosis, activation of microbicidal effector functions, immunomodulation, and leukocyte trafficking. In addition, integration of signaling and response with other cytokines and pathogen-associated molecular patterns, such as tumor necrosis factor-alpha, interleukin-4, type I IFNs, and lipopolysaccharide are discussed.

3,589 citations

Journal ArticleDOI
TL;DR: Genetic evidence and in vitro functional studies indicate that V617F gives hematopoietic precursors proliferative and survival advantages and a high proportion of patients with myeloproliferative disorders carry a dominant gain-of-function mutation of JAK2.
Abstract: background Polycythemia vera, essential thrombocythemia, and idiopathic myelofibrosis are clonal myeloproliferative disorders arising from a multipotent progenitor. The loss of heterozygosity (LOH) on the short arm of chromosome 9 (9pLOH) in myeloproliferative disorders suggests that 9p harbors a mutation that contributes to the cause of clonal expansion of hematopoietic cells in these diseases. methods We performed microsatellite mapping of the 9pLOH region and DNA sequencing in 244 patients with myeloproliferative disorders (128 with polycythemia vera, 93 with essential thrombocythemia, and 23 with idiopathic myelofibrosis). results Microsatellite mapping identified a 9pLOH region that included the Janus kinase 2 ( JAK2 )

3,391 citations