scispace - formally typeset
Search or ask a question
Author

Yvan Castin

Bio: Yvan Castin is an academic researcher from École Normale Supérieure. The author has contributed to research in topics: Bose–Einstein condensate & Bose gas. The author has an hindex of 28, co-authored 61 publications receiving 5168 citations. Previous affiliations of Yvan Castin include Collège de France & Aarhus University.


Papers
More filters
Journal ArticleDOI
17 May 2002-Science
TL;DR: The production of matter-wave solitons in an ultracold lithium-7 gas opens possibilities for future applications in coherent atom optics, atom interferometry, and atom transport.
Abstract: We report the production of matter-wave solitons in an ultracold lithium-7 gas. The effective interaction between atoms in a Bose-Einstein condensate is tuned with a Feshbach resonance from repulsive to attractive before release in a one-dimensional optical waveguide. Propagation of the soliton without dispersion over a macroscopic distance of 1.1 millimeter is observed. A simple theoretical model explains the stability region of the soliton. These matter-wave solitons open possibilities for future applications in coherent atom optics, atom interferometry, and atom transport.

1,294 citations

Journal ArticleDOI
TL;DR: Ultracold cesium atoms are prepared in the ground energy band of the potential induced by an optical standing wave and the momentum distribution of Bloch states and effective masses different from the mass of the free atom is measured.
Abstract: Ultracold cesium atoms are prepared in the ground energy band of the potential induced by an optical standing wave. We observe Bloch oscillations of the atoms driven by a constant inertial force. We measure the momentum distribution of Bloch states and effective masses different from the mass of the free atom. {copyright} {ital 1996 The American Physical Society.}

704 citations

Journal ArticleDOI
TL;DR: Analytical results for the macroscopic wave function of a Bose-Einstein condensate in a time dependent harmonic potential are presented, characterized by three scaling factors which allow a classical interpretation of the dynamics.
Abstract: We present analytical results for the macroscopic wave function of a Bose-Einstein condensate in a time dependent harmonic potential. The evolution of the spatial density is a dilatation, characterized by three scaling factors which allow a classical interpretation of the dynamics. This approach is an efficient tool for the analysis of recent experimental results on the expansion and collective excitation of a condensate.

684 citations

Journal ArticleDOI
TL;DR: In this article, two independent Bose-Einstein condensates, each initially containing a well-defined number of atoms, were shown to appear coherent in an experiment that measures the beat note between these condensate.
Abstract: We show that two independent Bose-Einstein condensates, each initially containing a well-defined number of atoms, will appear coherent in an experiment that measures the beat note between these condensates. We investigate the role played by atomic interactions within each condensate in the time evolution of their relative phase.

360 citations

Journal ArticleDOI
TL;DR: In this paper, an extension of the well-known Bogoliubov theory to treat low-dimensional degenerate Bose gases in the limit of weak interactions and low density fluctuations is presented.
Abstract: We present an extension of the well-known Bogoliubov theory to treat low-dimensional degenerate Bose gases in the limit of weak interactions and low density fluctuations. We use a density-phase representation and show that a precise definition of the phase operator requires a space discretization in cells of size l. We perform a systematic expansion of the Hamiltonian in terms of two small parameters, the relative density fluctuations inside a cell and the phase change over a cell. The resulting macroscopic observables can be computed in one, two, and three dimensions with no ultraviolet or infrared divergence. Furthermore, this approach exactly matches Bogoliubov's approach when there is a true condensate. We give the resulting expressions for the equation of state of the gas, the ground state energy, and the first order and second order correlation functions of the field. Explicit calculations are done for homogeneous systems.

316 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: In this article, a review of recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases is presented, focusing on effects beyond standard weakcoupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation.
Abstract: This paper reviews recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases. It focuses on effects beyond standard weak-coupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation. Strong correlations in fermionic gases are discussed in optical lattices or near-Feshbach resonances in the BCS-BEC crossover.

6,601 citations

Journal ArticleDOI
14 Jul 1995-Science
TL;DR: A Bose-Einstein condensate was produced in a vapor of rubidium-87 atoms that was confined by magnetic fields and evaporatively cooled and exhibited a nonthermal, anisotropic velocity distribution expected of the minimum-energy quantum state of the magnetic trap in contrast to the isotropic, thermal velocity distribution observed in the broad uncondensed fraction.
Abstract: A Bose-Einstein condensate was produced in a vapor of rubidium-87 atoms that was confined by magnetic fields and evaporatively cooled. The condensate fraction first appeared near a temperature of 170 nanokelvin and a number density of 2.5 x 10 12 per cubic centimeter and could be preserved for more than 15 seconds. Three primary signatures of Bose-Einstein condensation were seen. (i) On top of a broad thermal velocity distribution, a narrow peak appeared that was centered at zero velocity. (ii) The fraction of the atoms that were in this low-velocity peak increased abruptly as the sample temperature was lowered. (iii) The peak exhibited a nonthermal, anisotropic velocity distribution expected of the minimum-energy quantum state of the magnetic trap in contrast to the isotropic, thermal velocity distribution observed in the broad uncondensed fraction.

6,074 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the Bose-Einstein condensation of dilute gases in traps from a theoretical perspective and provided a framework to understand the main features of the condensation and role of interactions between particles.
Abstract: The phenomenon of Bose-Einstein condensation of dilute gases in traps is reviewed from a theoretical perspective. Mean-field theory provides a framework to understand the main features of the condensation and the role of interactions between particles. Various properties of these systems are discussed, including the density profiles and the energy of the ground-state configurations, the collective oscillations and the dynamics of the expansion, the condensate fraction and the thermodynamic functions. The thermodynamic limit exhibits a scaling behavior in the relevant length and energy scales. Despite the dilute nature of the gases, interactions profoundly modify the static as well as the dynamic properties of the system; the predictions of mean-field theory are in excellent agreement with available experimental results. Effects of superfluidity including the existence of quantized vortices and the reduction of the moment of inertia are discussed, as well as the consequences of coherence such as the Josephson effect and interference phenomena. The review also assesses the accuracy and limitations of the mean-field approach.

4,782 citations

Proceedings Article
14 Jul 1996
TL;DR: The striking signature of Bose condensation was the sudden appearance of a bimodal velocity distribution below the critical temperature of ~2µK.
Abstract: Bose-Einstein condensation (BEC) has been observed in a dilute gas of sodium atoms. A Bose-Einstein condensate consists of a macroscopic population of the ground state of the system, and is a coherent state of matter. In an ideal gas, this phase transition is purely quantum-statistical. The study of BEC in weakly interacting systems which can be controlled and observed with precision holds the promise of revealing new macroscopic quantum phenomena that can be understood from first principles.

3,530 citations