scispace - formally typeset
Search or ask a question
Author

Yves J. Gschwind

Bio: Yves J. Gschwind is an academic researcher from University of New South Wales. The author has contributed to research in topics: Fall prevention & Poison control. The author has an hindex of 19, co-authored 29 publications receiving 998 citations. Previous affiliations of Yves J. Gschwind include University Hospital of Basel & Neuroscience Research Australia.

Papers
More filters
Journal ArticleDOI
TL;DR: The objective of the present trial is to assess the effects of a fall prevention program that was developed by an interdisciplinary expert panel on measures of balance, strength / power, body composition, cognition, psychosocial well-being, and falls self-efficacy in healthy older adults.
Abstract: With increasing age neuromuscular deficits (e.g., sarcopenia) may result in impaired physical performance and an increased risk for falls. Prominent intrinsic fall-risk factors are age-related decreases in balance and strength / power performance as well as cognitive decline. Additional studies are needed to develop specifically tailored exercise programs for older adults that can easily be implemented into clinical practice. Thus, the objective of the present trial is to assess the effects of a fall prevention program that was developed by an interdisciplinary expert panel on measures of balance, strength / power, body composition, cognition, psychosocial well-being, and falls self-efficacy in healthy older adults. Additionally, the time-related effects of detraining are tested.

134 citations

Journal ArticleDOI
TL;DR: Remote gait impairment monitoring using wearable devices is feasible providing new ways to investigate morbidity and falls risk, and laboratory-assessed gait performances are correlated with free-living walks, but likely reflect the individual’s ‘best’ performance.
Abstract: Morbidity and falls are problematic for older people. Wearable devices are increasingly used to monitor daily activities. However, sensors often require rigid attachment to specific locations and shuffling or quiet standing may be confused with walking. Furthermore, it is unclear whether clinical gait assessments are correlated with how older people usually walk during daily life. Wavelet transformations of accelerometer and barometer data from a pendant device worn inside or outside clothing were used to identify walking (excluding shuffling or standing) by 51 older people (83 ± 4 years) during 25 min of 'free-living' activities. Accuracy was validated against annotated video. Training and testing were separated. Activities were only loosely structured including noisy data preceding pendant wearing. An electronic walkway was used for laboratory comparisons. Walking was classified (accuracy ≥97 %) with low false-positive errors (≤1.9%, κ ≥ 0.90). Median free-living cadence was lower than laboratory-assessed cadence (101 vs. 110 steps/min, p < 0.001) but correlated (r = 0.69). Free-living step time variability was significantly higher and uncorrelated with laboratory-assessed variability unless detrended. Remote gait impairment monitoring using wearable devices is feasible providing new ways to investigate morbidity and falls risk. Laboratory-assessed gait performances are correlated with free-living walks, but likely reflect the individual's 'best' performance.

114 citations

Journal ArticleDOI
TL;DR: Twelve weeks of BST proved to be safe (no training-related injuries) and feasible (high attendance rates of >90%).
Abstract: Background: Losses in lower extremity muscle strength/power, muscle mass and deficits in static and particularly dynamic balance due to aging are associated with impaired functional performance and an increased fall risk. It has been shown that the combination of balance and strength training (BST) mitigates these age-related deficits. However, it is unresolved whether supervised versus unsupervised BST is equally effective in improving muscle power and balance in older adults. Objective: This study examined the impact of a 12-week BST program followed by 12 weeks of detraining on measures of balance and muscle power in healthy older adults enrolled in supervised (SUP) or unsupervised (UNSUP) training. Methods: Sixty-six older adults (men: 25, women: 41; age 73 ± 4 years) were randomly assigned to a SUP group (2/week supervised training, 1/week unsupervised training; n = 22), an UNSUP group (3/week unsupervised training; n = 22) or a passive control group (CON; n = 22). Static (i.e., Romberg Test) and dynamic (i.e., 10-meter walk test) steady-state, proactive (i.e., Timed Up and Go Test, Functional Reach Test), and reactive balance (e.g., Push and Release Test), as well as lower extremity muscle power (i.e., Chair Stand Test; Stair Ascent and Descent Test) were tested before and after the active training phase as well as after detraining. Results: Adherence rates to training were 92% for SUP and 97% for UNSUP. BST resulted in significant group × time interactions. Post hoc analyses showed, among others, significant training-related improvements for the Romberg Test, stride velocity, Timed Up and Go Test, and Chair Stand Test in favor of the SUP group. Following detraining, significantly enhanced performances (compared to baseline) were still present in 13 variables for the SUP group and in 10 variables for the UNSUP group. Conclusion: Twelve weeks of BST proved to be safe (no training-related injuries) and feasible (high attendance rates of >90%). Deficits of balance and lower extremity muscle power can be mitigated by BST in healthy older adults. Additionally, supervised as compared to unsupervised BST was more effective. Thus, it is recommended to counteract intrinsic fall risk factors by applying supervised BST programs for older adults.

112 citations

Journal ArticleDOI
TL;DR: The iStoppFalls exercise program reduced physiological fall risk in the study sample and revealed that intervention participants with better adherence also improved in postural sway, stepping reaction, and executive function.
Abstract: Falls and fall-related injuries are a serious public health issue. Exercise programs can effectively reduce fall risk in older people. The iStoppFalls project developed an Information and Communication Technology-based system to deliver an unsupervised exercise program in older people’s homes. The primary aims of the iStoppFalls randomized controlled trial were to assess the feasibility (exercise adherence, acceptability and safety) of the intervention program and its effectiveness on common fall risk factors. A total of 153 community-dwelling people aged 65+ years took part in this international, multicentre, randomized controlled trial. Intervention group participants conducted the exercise program for 16 weeks, with a recommended duration of 120 min/week for balance exergames and 60 min/week for strength exercises. All intervention and control participants received educational material including advice on a healthy lifestyle and fall prevention. Assessments included physical and cognitive tests, and questionnaires for health, fear of falling, number of falls, quality of life and psychosocial outcomes. The median total exercise duration was 11.7 h (IQR = 22.0) over the 16-week intervention period. There were no adverse events. Physiological fall risk (Physiological Profile Assessment, PPA) reduced significantly more in the intervention group compared to the control group (F1,127 = 4.54, p = 0.035). There was a significant three-way interaction for fall risk assessed by the PPA between the high-adherence (>90 min/week; n = 18, 25.4 %), low-adherence (<90 min/week; n = 53, 74.6 %) and control group (F2,125 = 3.12, n = 75, p = 0.044). Post hoc analysis revealed a significantly larger effect in favour of the high-adherence group compared to the control group for fall risk (p = 0.031), postural sway (p = 0.046), stepping reaction time (p = 0.041), executive functioning (p = 0.044), and quality of life (p for trend = 0.052). The iStoppFalls exercise program reduced physiological fall risk in the study sample. Additional subgroup analyses revealed that intervention participants with better adherence also improved in postural sway, stepping reaction, and executive function. Australian New Zealand Clinical Trials Registry Trial ID: ACTRN12614000096651 International Standard Randomised Controlled Trial Number: ISRCTN15932647

98 citations

Journal ArticleDOI
TL;DR: Salsa proved to be a safe and feasible exercise programme for older adults accompanied with a high adherence rate and age-related deficits in measures of static and particularly dynamic postural control can be mitigated by salsa dancing in older adults.
Abstract: Background: Deficits in static and particularly dynamic postural control and force production have frequently been associated with an increased risk of falling in

80 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A large number of trials evaluating the effects of any form of exercise as a single intervention on falls in people aged 60+ years living in the community found exercise may make little important difference to health-related quality of life.
Abstract: Background At least one-third of community-dwelling people over 65 years of age fall each year. Exercises that target balance, gait and muscle strength have been found to prevent falls in these people. An up-to-date synthesis of the evidence is important given the major long-term consequences associated with falls and fall-related injuries OBJECTIVES: To assess the effects (benefits and harms) of exercise interventions for preventing falls in older people living in the community. Search methods We searched CENTRAL, MEDLINE, Embase, three other databases and two trial registers up to 2 May 2018, together with reference checking and contact with study authors to identify additional studies. Selection criteria We included randomised controlled trials (RCTs) evaluating the effects of any form of exercise as a single intervention on falls in people aged 60+ years living in the community. We excluded trials focused on particular conditions, such as stroke. Data collection and analysis We used standard methodological procedures expected by Cochrane. Our primary outcome was rate of falls. Main results We included 108 RCTs with 23,407 participants living in the community in 25 countries. There were nine cluster-RCTs. On average, participants were 76 years old and 77% were women. Most trials had unclear or high risk of bias for one or more items. Results from four trials focusing on people who had been recently discharged from hospital and from comparisons of different exercises are not described here.Exercise (all types) versus control Eighty-one trials (19,684 participants) compared exercise (all types) with control intervention (one not thought to reduce falls). Exercise reduces the rate of falls by 23% (rate ratio (RaR) 0.77, 95% confidence interval (CI) 0.71 to 0.83; 12,981 participants, 59 studies; high-certainty evidence). Based on an illustrative risk of 850 falls in 1000 people followed over one year (data based on control group risk data from the 59 studies), this equates to 195 (95% CI 144 to 246) fewer falls in the exercise group. Exercise also reduces the number of people experiencing one or more falls by 15% (risk ratio (RR) 0.85, 95% CI 0.81 to 0.89; 13,518 participants, 63 studies; high-certainty evidence). Based on an illustrative risk of 480 fallers in 1000 people followed over one year (data based on control group risk data from the 63 studies), this equates to 72 (95% CI 52 to 91) fewer fallers in the exercise group. Subgroup analyses showed no evidence of a difference in effect on both falls outcomes according to whether trials selected participants at increased risk of falling or not.The findings for other outcomes are less certain, reflecting in part the relatively low number of studies and participants. Exercise may reduce the number of people experiencing one or more fall-related fractures (RR 0.73, 95% CI 0.56 to 0.95; 4047 participants, 10 studies; low-certainty evidence) and the number of people experiencing one or more falls requiring medical attention (RR 0.61, 95% CI 0.47 to 0.79; 1019 participants, 5 studies; low-certainty evidence). The effect of exercise on the number of people who experience one or more falls requiring hospital admission is unclear (RR 0.78, 95% CI 0.51 to 1.18; 1705 participants, 2 studies, very low-certainty evidence). Exercise may make little important difference to health-related quality of life: conversion of the pooled result (standardised mean difference (SMD) -0.03, 95% CI -0.10 to 0.04; 3172 participants, 15 studies; low-certainty evidence) to the EQ-5D and SF-36 scores showed the respective 95% CIs were much smaller than minimally important differences for both scales.Adverse events were reported to some degree in 27 trials (6019 participants) but were monitored closely in both exercise and control groups in only one trial. Fourteen trials reported no adverse events. Aside from two serious adverse events (one pelvic stress fracture and one inguinal hernia surgery) reported in one trial, the remainder were non-serious adverse events, primarily of a musculoskeletal nature. There was a median of three events (range 1 to 26) in the exercise groups.Different exercise types versus controlDifferent forms of exercise had different impacts on falls (test for subgroup differences, rate of falls: P = 0.004, I² = 71%). Compared with control, balance and functional exercises reduce the rate of falls by 24% (RaR 0.76, 95% CI 0.70 to 0.81; 7920 participants, 39 studies; high-certainty evidence) and the number of people experiencing one or more falls by 13% (RR 0.87, 95% CI 0.82 to 0.91; 8288 participants, 37 studies; high-certainty evidence). Multiple types of exercise (most commonly balance and functional exercises plus resistance exercises) probably reduce the rate of falls by 34% (RaR 0.66, 95% CI 0.50 to 0.88; 1374 participants, 11 studies; moderate-certainty evidence) and the number of people experiencing one or more falls by 22% (RR 0.78, 95% CI 0.64 to 0.96; 1623 participants, 17 studies; moderate-certainty evidence). Tai Chi may reduce the rate of falls by 19% (RaR 0.81, 95% CI 0.67 to 0.99; 2655 participants, 7 studies; low-certainty evidence) as well as reducing the number of people who experience falls by 20% (RR 0.80, 95% CI 0.70 to 0.91; 2677 participants, 8 studies; high-certainty evidence). We are uncertain of the effects of programmes that are primarily resistance training, or dance or walking programmes on the rate of falls and the number of people who experience falls. No trials compared flexibility or endurance exercise versus control. Authors' conclusions Exercise programmes reduce the rate of falls and the number of people experiencing falls in older people living in the community (high-certainty evidence). The effects of such exercise programmes are uncertain for other non-falls outcomes. Where reported, adverse events were predominantly non-serious.Exercise programmes that reduce falls primarily involve balance and functional exercises, while programmes that probably reduce falls include multiple exercise categories (typically balance and functional exercises plus resistance exercises). Tai Chi may also prevent falls but we are uncertain of the effect of resistance exercise (without balance and functional exercises), dance, or walking on the rate of falls.

606 citations

Journal ArticleDOI
07 Nov 2017-JAMA
TL;DR: Exercise alone and various combinations of interventions were associated with lower risk of injurious falls compared with usual care, and choice of fall-prevention intervention may depend on patient and caregiver values and preferences.
Abstract: Importance Falls result in substantial burden for patients and health care systems, and given the aging of the population worldwide, the incidence of falls continues to rise. Objective To assess the potential effectiveness of interventions for preventing falls. Data Sources MEDLINE, Embase, Cochrane Central Register of Controlled Trials, and Ageline databases from inception until April 2017. Reference lists of included studies were scanned. Study Selection Randomized clinical trials (RCTs) of fall-prevention interventions for participants aged 65 years and older. Data Extraction and Synthesis Pairs of reviewers independently screened the studies, abstracted data, and appraised risk of bias. Pairwise meta-analysis and network meta-analysis were conducted. Main Outcomes and Measures Injurious falls and fall-related hospitalizations. Results A total of 283 RCTs (159 910 participants; mean age, 78.1 years; 74% women) were included after screening of 10 650 titles and abstracts and 1210 full-text articles. Network meta-analysis (including 54 RCTs, 41 596 participants, 39 interventions plus usual care) suggested that the following interventions, when compared with usual care, were associated with reductions in injurious falls: exercise (odds ratio [OR], 0.51 [95% CI, 0.33 to 0.79]; absolute risk difference [ARD], −0.67 [95% CI, −1.10 to −0.24]); combined exercise and vision assessment and treatment (OR, 0.17 [95% CI, 0.07 to 0.38]; ARD, −1.79 [95% CI, −2.63 to −0.96]); combined exercise, vision assessment and treatment, and environmental assessment and modification (OR, 0.30 [95% CI, 0.13 to 0.70]; ARD, −1.19 [95% CI, −2.04 to −0.35]); and combined clinic-level quality improvement strategies (eg, case management), multifactorial assessment and treatment (eg, comprehensive geriatric assessment), calcium supplementation, and vitamin D supplementation (OR, 0.12 [95% CI, 0.03 to 0.55]; ARD, −2.08 [95% CI, −3.56 to −0.60]). Pairwise meta-analyses for fall-related hospitalizations (2 RCTs; 516 participants) showed no significant association between combined clinic- and patient-level quality improvement strategies and multifactorial assessment and treatment relative to usual care (OR, 0.78 [95% CI, 0.33 to 1.81]). Conclusions and Relevance Exercise alone and various combinations of interventions were associated with lower risk of injurious falls compared with usual care. Choice of fall-prevention intervention may depend on patient and caregiver values and preferences.

389 citations

Journal ArticleDOI
TL;DR: Key recommendations include adopting a multidisciplinary approach for standardizing definitions, protocols, and outcomes and robust validation of developed algorithms and sensor‐based metrics is required along with testing of utility before widespread clinical adoption of wearable technology can be realized.
Abstract: Wearable technology comprises miniaturized sensors (eg, accelerometers) worn on the body and/or paired with mobile devices (eg, smart phones) allowing continuous patient monitoring in unsupervised, habitual environments (termed free-living). Wearable technologies are revolutionizing approaches to health care as a result of their utility, accessibility, and affordability. They are positioned to transform Parkinson's disease (PD) management through the provision of individualized, comprehensive, and representative data. This is particularly relevant in PD where symptoms are often triggered by task and free-living environmental challenges that cannot be replicated with sufficient veracity elsewhere. This review concerns use of wearable technology in free-living environments for people with PD. It outlines the potential advantages of wearable technologies and evidence for these to accurately detect and measure clinically relevant features including motor symptoms, falls risk, freezing of gait, gait, functional mobility, and physical activity. Technological limitations and challenges are highlighted, and advances concerning broader aspects are discussed. Recommendations to overcome key challenges are made. To date there is no fully validated system to monitor clinical features or activities in free-living environments. Robust accuracy and validity metrics for some features have been reported, and wearable technology may be used in these cases with a degree of confidence. Utility and acceptability appears reasonable, although testing has largely been informal. Key recommendations include adopting a multidisciplinary approach for standardizing definitions, protocols, and outcomes. Robust validation of developed algorithms and sensor-based metrics is required along with testing of utility. These advances are required before widespread clinical adoption of wearable technology can be realized. © 2016 International Parkinson and Movement Disorder Society.

238 citations

Journal ArticleDOI
Silvia Del Din1, Alan Godfrey1, Brook Galna1, Sue Lord1, Lynn Rochester1 
TL;DR: Encouraging results are provided to support the use of a single BWM for free-living gait evaluation in people with PD with potential for research and clinical application.
Abstract: Gait is emerging as a powerful diagnostic and prognostic tool, and as a surrogate marker of disease progression for Parkinson’s disease (PD). Accelerometer-based body worn monitors (BWMs) facilitate the measurement of gait in clinical environments. Moreover they have the potential to provide a more accurate reflection of gait in the home during habitual behaviours. Emerging research suggests that measurement of gait using BWMs is feasible but this has not been investigated in depth. The aims of this study were to explore (i) the impact of environment and (ii) ambulatory bout (AB) length on gait characteristics for discriminating between people with PD and age-matched controls. Fourteen clinically relevant gait characteristics organised in five domains (pace, variability, rhythm, asymmetry, postural control) were quantified using laboratory based and free-living data collected over 7 days using a BWM placed on the lower back in 47 PD participants and 50 controls. Free-living data showed that both groups walked with decreased pace and increased variability, rhythm and asymmetry compared to walking in the laboratory setting. Four of the 14 gait characteristics measured in free-living conditions were significantly different between controls and people with PD compared to two measured in the laboratory. Between group differences depended on bout length and were more apparent during longer ABs. ABs ≤ 10s did not discriminate between groups. Medium to long ABs highlighted between-group significant differences for pace, rhythm and asymmetry. Longer ABs should therefore be taken into account when evaluating gait characteristics in free-living conditions. This study provides encouraging results to support the use of a single BWM for free-living gait evaluation in people with PD with potential for research and clinical application.

220 citations

Journal ArticleDOI
TL;DR: Evidence is provided in support of the validity of UTAUT2 as a relevant theoretical base to effectively explain behavioural intentions and ICT use among older adults.

214 citations