scispace - formally typeset
Search or ask a question
Author

Yves Mély

Bio: Yves Mély is an academic researcher from University of Strasbourg. The author has contributed to research in topics: DNA & Nucleic acid. The author has an hindex of 62, co-authored 368 publications receiving 13478 citations. Previous affiliations of Yves Mély include Centre national de la recherche scientifique & University of Nice Sophia Antipolis.
Topics: DNA, Nucleic acid, Membrane, Fluorescence, Zinc finger


Papers
More filters
Journal ArticleDOI
TL;DR: These probes are efficient for studying the microscopic analogs of viscosity, polarity, and hydration, as well as the molecular order, environment relaxation, and electrostatic potentials at the sites of their location.

348 citations

Journal ArticleDOI
TL;DR: The attractive photophysical and switching properties of NR12S, together with its selective outer leaflet staining and sensitivity to cholesterol and lipid order, make it a new powerful tool for studying model and cell membranes.
Abstract: Cholesterol and sphingomyelin form together a highly ordered membrane phase, which is believed to play important biological functions in plasma membranes of mammalian cells. Since sphingomyelin is ...

332 citations

Journal ArticleDOI
TL;DR: The first ratiometric fluorescent probe for apoptosis detection is developed, which incorporates selectively into the outer leaflet of the cell plasma membrane and senses the loss of the plasma membrane asymmetry occurring during the early steps of apoptosis.
Abstract: Herein, we developed the first ratiometric fluorescent probe for apoptosis detection. This probe incorporates selectively into the outer leaflet of the cell plasma membrane and senses the loss of the plasma membrane asymmetry occurring during the early steps of apoptosis. The high specificity to the plasma membranes was achieved by introduction into the probe of a membrane anchor, composed of a zwitterionic group and a long (dodecyl) hydrophobic tail. The fluorescence reporter of this probe is 4'-(diethylamino)-3-hydroxyflavone, which exhibits excited-state intramolecular proton transfer (ESIPT), resulting in two-band emission highly sensitive to the lipid composition of the biomembranes. Fluorescence spectroscopy, flow cytometry, and microscopy measurements show that the ratio of the two emission bands of the probe changes dramatically in response to apoptosis. This response reflects the changes in the lipid composition of the outer leaflet of the cell plasma membrane because of the exposure of the anionic phospholipids from the inner leaflet at the early steps of apoptosis. Being ratiometric, the response of the new probe can be easily quantified on an absolute scale. This allows monitoring by laser scanning confocal microscopy the degree and spatial distribution of the apoptotic changes at the cell plasma membranes, a feature that can be hardly achieved with the commonly used fluorescently labeled annexin V assay.

291 citations

Journal ArticleDOI
TL;DR: Fluorescence correlation spectroscopy was used to monitor the purification of PEI/DNA complexes by ultrafiltration as well as the heparin-induced dissociation of the complexes, and it was inferred that in contrast to DNA condensation by small multivalent cations, only a limited neutralization of the DNA phosphate groups is required for DNA Condensation by PEI.

275 citations

Journal ArticleDOI
TL;DR: In this paper, the electronic conjugation of one of the best solvatochromic dyes, Prodan, was extended by substituting its naphthalene core with fluorene.
Abstract: In a search for environmentally sensitive (solvatochromic) dyes with superior properties, we extended the electronic conjugation of one of the best solvatochromic dyes, Prodan, by substituting its naphthalene core with fluorene. The newly synthesized fluorene derivatives bearing strong electron-donor (dialkylamino) and -acceptor (carbonyl) groups at the 2 and 7 positions showed red-shifted absorption (close to 400 nm), twice as large of a absorption coefficient (43 000 M−1 cm−1), and a manifold larger two-photon absorption cross section (∼400 GM) compared to Prodan. Studies in solvents revealed much stronger fluorescence solvatochromism of the new dyes, which is connected with their twice as large transition dipole moment (14.0 D). Similarly to Prodan, they exhibit high fluorescence quantum yields, while their photostability is largely improved. Thus, substitution of the naphthalene core in Prodan with fluorene resulted in new fluorophores with superior spectroscopic and solvatochromic properties. We expe...

181 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This Perspective explores and explains the fundamental dogma of nanoparticle delivery to tumours and answers two central questions: ‘ how many nanoparticles accumulate in a tumour?’ and ‘how does this number affect the clinical translation of nanomedicines?'
Abstract: This Perspective explores and explains the fundamental dogma of nanoparticle delivery to tumours and answers two central questions: ‘how many nanoparticles accumulate in a tumour?’ and ‘how does this number affect the clinical translation of nanomedicines?’

3,335 citations

Journal Article
TL;DR: This volume is keyed to high resolution electron microscopy, which is a sophisticated form of structural analysis, but really morphology in a modern guise, the physical and mechanical background of the instrument and its ancillary tools are simply and well presented.
Abstract: I read this book the same weekend that the Packers took on the Rams, and the experience of the latter event, obviously, colored my judgment. Although I abhor anything that smacks of being a handbook (like, \"How to Earn a Merit Badge in Neurosurgery\") because too many volumes in biomedical science already evince a boyscout-like approach, I must confess that parts of this volume are fast, scholarly, and significant, with certain reservations. I like parts of this well-illustrated book because Dr. Sj6strand, without so stating, develops certain subjects on technique in relation to the acquisition of judgment and sophistication. And this is important! So, given that the author (like all of us) is somewhat deficient in some areas, and biased in others, the book is still valuable if the uninitiated reader swallows it in a general fashion, realizing full well that what will be required from the reader is a modulation to fit his vision, propreception, adaptation and response, and the kind of problem he is undertaking. A major deficiency of this book is revealed by comparison of its use of physics and of chemistry to provide understanding and background for the application of high resolution electron microscopy to problems in biology. Since the volume is keyed to high resolution electron microscopy, which is a sophisticated form of structural analysis, but really morphology in a modern guise, the physical and mechanical background of The instrument and its ancillary tools are simply and well presented. The potential use of chemical or cytochemical information as it relates to biological fine structure , however, is quite deficient. I wonder when even sophisticated morphol-ogists will consider fixation a reaction and not a technique; only then will the fundamentals become self-evident and predictable and this sine qua flon will become less mystical. Staining reactions (the most inadequate chapter) ought to be something more than a technique to selectively enhance contrast of morphological elements; it ought to give the structural addresses of some of the chemical residents of cell components. Is it pertinent that auto-radiography gets singled out for more complete coverage than other significant aspects of cytochemistry by a high resolution microscopist, when it has a built-in minimal error of 1,000 A in standard practice? I don't mean to blind-side (in strict football terminology) Dr. Sj6strand's efforts for what is \"routinely used in our laboratory\"; what is done is usually well done. It's just that …

3,197 citations