scispace - formally typeset
Search or ask a question
Author

Yves Piché

Other affiliations: Université de Montréal
Bio: Yves Piché is an academic researcher from Laval University. The author has contributed to research in topics: Mycorrhiza & Glomus. The author has an hindex of 46, co-authored 104 publications receiving 7017 citations. Previous affiliations of Yves Piché include Université de Montréal.


Papers
More filters
Journal ArticleDOI
TL;DR: A reliable, inexpensive, and simple method for staining arbuscular-mycorrhizal fungal colonizations in root tissues and could be of great utility in teaching exercises.
Abstract: We developed a reliable, inexpensive, and simple method for staining arbuscular-mycorrhizal fungal colonizations in root tissues. Apart from applications in research, this nontoxic, high-quality staining method also could be of great utility in teaching exercises. After adequate clearing with KOH, an ink-vinegar solution successfully stained all fungal structures, rendering them clearly visible.

1,362 citations

Journal ArticleDOI
TL;DR: Results indicate that Azoarcus sp.
Abstract: The extent to which the N2-fixing bacterial endophyte Azoarcus sp. strain BH72 in the rhizosphere of Kallar grass can provide fixed nitrogen to the plant was assessed by evaluating inoculated plants grown in the greenhouse and uninoculated plants taken from the natural environment. The inoculum consisted of either wild-type bacteria or nifK- mutant strain BHNKD4. In N2-deficient conditions, plants inoculated with strain BH72 (N2-fixing test plants) grew better and accumulated more nitrogen with a lower delta15N signature after 8 months than did plants inoculated with the mutant strain (non-N2-fixing control plants). Polyadenylated or polymerase chain reaction-amplified BH72 nifH transcripts were retrieved from test but not from control plants. BH72 nifH transcripts were abundant. The inocula could not be reisolated. These results indicate that Azoarcus sp. BH72 can contribute combined N2 to the plant in an unculturable state. Abundant BH72 nifH transcripts were detected also in uninoculated plants taken from the natural environment, from which Azoarcus sp. BH72 also could not be isolated. Quantification of nitrogenase gene transcription indicated a high potential of strain BH72 for biological N2 fixation in association with roots. Phylogenetic analysis of nitrogenase sequences predicted that uncultured grass endophytes including Azoarcus spp. are ecologically dominant and play an important role in N2-fixation in natural grass ecosystems.

277 citations

Journal ArticleDOI
TL;DR: Carbon dioxide was demonstrated to be a critical root volatile involved in the enhancement of hyphal growth for the first time and strongly suggested that CO(2) served as an essential carbon source.
Abstract: Transformed roots of carrot were used to determine the effects of root metabolites on hyphal development from spores of the vesicular-arbuscular mycorrhizal fungus Gigaspora margarita. Hyphal growth of this obligately biotrophic symbiont was greatly stimulated by a synergistic interaction between volatile and exudated factors produced by roots. Root volatiles alone provided little stimulation, and root exudates alone had no effect. For the first time, carbon dioxide was demonstrated to be a critical root volatile involved in the enhancement of hyphal growth. C-labeled root volatiles were fixed by the fungus and thus strongly suggested that CO(2) served as an essential carbon source.

271 citations

Journal ArticleDOI
01 Jan 2002-Botany
TL;DR: This review highlights the considerable impact that in vitro root-organ cultures have had on studies of AM fungal morphology, taxonomy, and phylogeny and how they have improved the processes leading to root colonization and development of the extraradical mycelium.
Abstract: The study of arbuscular mycorrhizal (AM) fungi and the AM symbiosis formed with host plant roots is com- plicated by the biotrophic and hypogeous nature of the mycobionts involved. To overcome this, several attempts have been made during the last three decades to obtain this symbiosis in vitro. The use of root-organ cultures has proved particularly successful. In this review, we describe the method by which root-organ cultures (transformed and nontransformed) have been obtained, together with the choice of host species, inoculation techniques, and culture me - dia. We also outline the potential use of continuous cultures and cryopreservation of in vitro produced spores for long-term germ plasm storage. Furthermore, this review highlights the considerable impact that in vitro root-organ cul - tures have had on studies of AM fungal morphology, taxonomy, and phylogeny and how they have improved our un- derstanding of the processes leading to root colonization and development of the extraradical mycelium. This is supported by a summary of some of the most important findings, regarding this symbiosis, that have been made at the physiological, biochemical, and molecular levels. We also summarize results from studies between AM fungi and cer- tain pathogenic and nonpathogenic soil microorganisms. We describe some of the limitations of this in vitro system and propose diverse avenues of AM research that can now be undertaken, including the potential use of a similar sys- tem for ectomycorrhizal research.

260 citations

Journal ArticleDOI
TL;DR: Results point towards an active uptake of nitrate by the extraradical mycelium of G. intraradices, probably coupled to a H+ -symport mechanism.
Abstract: The effect of the extraradical mycelium of the arbuscular mycorrhizal (AM) fungus Glomus intraradices Smith & Schenck on nitrate uptake and on the pH of the medium was studied in a monoxenic culture with tomato (Lycopersicon esculentum Mill. var. Vendor) roots obtained from root organ culture. The symbiosis was established in compartmented Petri dishes containing agar media amended with the pH indicator bromocresol purple. A pattern of pH changes was revealed as the symbiosis progressed in the media of the Petri dish compartments containing the dual, arbuscular-mycorrhizal fungi/root, culture as well as in the media of the hyphae, root-free compartments, in which the extraradical hyphae developed extensively, coming from the compartment containing the symbiosis. The colour changes in the media were measured spectrophotometrically, whilst maintaining the monoxenic conditions. The extraradical hyphae of G. intraradices strongly increased the pH of nutrient-free medium when supplied with nitrate, whereas the pH decreased m the absence of this N source. The hyphae developing from germinated spores and growing in axenic, nitrate-amended media did not induce any increase in pH. Nitrogen analysis revealed that a depletion of nitrate in the media accompanied increased pH. These results point towards an active uptake of nitrate by the extraradical mycelium of G. intraradices, probably coupled to a H+ -symport mechanism. The pH changes induced by AM fungal hyphae and the possible influence of the establishment of a functional symbiosis on these pH changes are discussed.

251 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The current status of botanical screening efforts, as well as in vivo studies of their effectiveness and toxicity, are summarized and the structure and antimicrobial properties of phytochemicals are addressed.
Abstract: The use of and search for drugs and dietary supplements derived from plants have accelerated in recent years. Ethnopharmacologists, botanists, microbiologists, and natural-products chemists are combing the Earth for phytochemicals and “leads” which could be developed for treatment of infectious diseases. While 25 to 50% of current pharmaceuticals are derived from plants, none are used as antimicrobials. Traditional healers have long used plants to prevent or cure infectious conditions; Western medicine is trying to duplicate their successes. Plants are rich in a wide variety of secondary metabolites, such as tannins, terpenoids, alkaloids, and flavonoids, which have been found in vitro to have antimicrobial properties. This review attempts to summarize the current status of botanical screening efforts, as well as in vivo studies of their effectiveness and toxicity. The structure and antimicrobial properties of phytochemicals are also addressed. Since many of these compounds are currently available as unregulated botanical preparations and their use by the public is increasing rapidly, clinicians need to consider the consequences of patients self-medicating with these preparations.

7,486 citations

Journal ArticleDOI
TL;DR: This review focuses on the known, the putative, and the speculative modes-of-action of PGPR, which include fixing N2, increasing the availability of nutrients in the rhizosphere, positively influencing root growth and morphology, and promoting other beneficial plant–microbe symbioses.
Abstract: Numerous species of soil bacteria which flourish in the rhizosphere of plants, but which may grow in, on, or around plant tissues, stimulate plant growth by a plethora of mechanisms. These bacteria are collectively known as PGPR (plant growth promoting rhizobacteria). The search for PGPR and investigation of their modes of action are increasing at a rapid pace as efforts are made to exploit them commercially as biofertilizers. After an initial clarification of the term biofertilizers and the nature of associations between PGPR and plants (i.e., endophytic versus rhizospheric), this review focuses on the known, the putative, and the speculative modes-of-action of PGPR. These modes of action include fixing N2, increasing the availability of nutrients in the rhizosphere, positively influencing root growth and morphology, and promoting other beneficial plant–microbe symbioses. The combination of these modes of actions in PGPR is also addressed, as well as the challenges facing the more widespread utilization of PGPR as biofertilizers.

2,982 citations

Journal ArticleDOI
TL;DR: Flavonoids are plant pigments that are synthesised from phenylalanine, generally display marvelous colors known from flower petals, mostly emit brilliant fluorescence when they are excited by UV light, and are ubiquitous to green plant cells.

2,424 citations

Journal ArticleDOI
TL;DR: The plant microbiota emerges as a fundamental trait that includes mutualism enabled through diverse biochemical mechanisms, as revealed by studies on plant growth- Promoting and plant health-promoting bacteria.
Abstract: Plants host distinct bacterial communities on and inside various plant organs, of which those associated with roots and the leaf surface are best characterized. The phylogenetic composition of these communities is defined by relatively few bacterial phyla, including Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. A synthesis of available data suggests a two-step selection process by which the bacterial microbiota of roots is differentiated from the surrounding soil biome. Rhizodeposition appears to fuel an initial substrate-driven community shift in the rhizosphere, which converges with host genotype–dependent finetuning of microbiota profiles in the selection of root endophyte assemblages. Substrate-driven selection also underlies the establishment of phyllosphere communities but takes place solely at the immediate leaf surface. Both the leaf and root microbiota contain bacteria that provide indirect pathogen protection, but root microbiota members appear to serve additional host functions through the acquisition of nutrients from soil for plant growth. Thus, the plant microbiota emerges as a fundamental trait that includes mutualism enabled through diverse biochemical mechanisms, as revealed by studies on plant growth–promoting and plant health–promoting bacteria.

2,169 citations

Journal ArticleDOI
TL;DR: Vesicular-arbuscular mycorrhizal fungi can affect the water balance of both amply watered and droughted host plants and the influence of soil drying on the fungi is discussed.
Abstract: Vesicular-arbuscular mycorrhizal fungi can affect the water balance of both amply watered and droughted host plants. This review summarizes these effects and possible causal mechanisms. Also discussed are host drought resistance and the influence of soil drying on the fungi.

1,964 citations