scispace - formally typeset
Search or ask a question
Author

Yves Salvadé

Bio: Yves Salvadé is an academic researcher from École Normale Supérieure. The author has contributed to research in topics: Interferometry & Laser. The author has an hindex of 11, co-authored 29 publications receiving 483 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A new tunable laser source concept for multiple-wavelength interferometry is proposed, offering an unprecedented large choice of synthetic wavelengths with a relative uncertainty better than 10(-11) in vacuum, which opens the way to absolute distance measurement with nanometer accuracy.
Abstract: We propose a new tunable laser source concept for multiple-wavelength interferometry, offering an unprecedented large choice of synthetic wavelengths with a relative uncertainty better than 10(-11) in vacuum. Two lasers are frequency stabilized over a wide range of frequency intervals defined by the frequency comb generated by a mode-locked fiber laser. In addition, we present experimental results demonstrating the generation of a 90 mum synthetic wavelength calibrated with an accuracy better than 0.2 parts in 10(6). With this synthetic wavelength we can resolve one optical wavelength, which opens the way to absolute distance measurement with nanometer accuracy.

154 citations

Journal ArticleDOI
TL;DR: A new approach to multiple-wavelength interferometry, targeted to high bandwidth absolute distance measurement, with nanometer accuracy over long distances, is proposed, with an accuracy of 8 nm over 800 mm for target velocities up to 50 mm/s.
Abstract: We propose a new approach to multiple-wavelength interferometry, targeted to high bandwidth absolute distance measurement, with nanometer accuracy over long distances. Two cw lasers are stabilized over a wide range of frequency intervals defined by an optical frequency comb, thus offering an unprecedented large choice of synthetic wavelengths. By applying a superheterodyne detection technique, we demonstrated experimentally an accuracy of 8 nm over 800 mm for target velocities up to 50 mm/s.

152 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive overview of the instrument infrastructure and present the observation strategy for dual-field relative astrometry in the infrared K-band, as well as the necessary corrections to the raw data are presented.
Abstract: Context. The ESPRI project relies on the astrometric capabilities offered by the PRIMA facility of the Very Large Telescope Interferometer for discovering and studying planetary systems. Our survey consists of obtaining high-precision astrometry for a large sample of stars over several years to detect their barycentric motions due to orbiting planets. We present the operation’s principle, the instrument’s implementation, and the results of a first series of test observations.Aims. We give a comprehensive overview of the instrument infrastructure and present the observation strategy for dual-field relative astrometry in the infrared K -band. We describe the differential delay lines, a key component of the PRIMA facility that was delivered by the ESPRI consortium, and discuss their performance within the facility. This paper serves as reference for future ESPRI publications and for the users of the PRIMA facility.Methods. Observations of bright visual binaries were used to test the observation procedures and to establish the instrument’s astrometric precision and accuracy. The data reduction strategy for the astrometry and the necessary corrections to the raw data are presented. Adaptive optics observations with NACO were used as an independent verification of PRIMA astrometric observations.Results. The PRIMA facility was used to carry out tests of astrometric observations. The astrometric performance in terms of precision is limited by the atmospheric turbulence at a level close to the theoretical expectations and a precision of 30 μ as was achieved. In contrast, the astrometric accuracy is insufficient for the goals of the ESPRI project and is currently limited by systematic errors that originate in the part of the interferometer beamtrain that is not monitored by the internal metrology system.Conclusions. Our observations led to defining corrective actions required to make the facility ready for carrying out the ESPRI search for extrasolar planets.

25 citations

Journal ArticleDOI
TL;DR: A Fabry-Perot fiber tip sensor based on an air-liquid filled cavity that could be an interesting candidate for insertion force monitoring for robotic cochlear implantation and on insertion into a human temporal bone is presented.
Abstract: This paper presents a Fabry-Perot fiber tip sensor based on an air-liquid filled cavity. The cavity is sealed off by a thin gold coated membrane of parylene C, between 300 and 350 nm, creating a particularly flexible diaphragm. In order to retrieve and track the cavity of interest from other cavities formed within the sensor tip, a signal processing of the feedback signal is performed by inverse fast Fourier transform. The experimental sensor has been manufactured and tested for temperature, giving cavity length sensitivities of 6.1 nm/°C and 9.6 nm/°C for temperature increase and decrease respectively. The external gas pressure response gives a sensitivity of 15 nm/kPa. The fiber sensor has also been adapted for force sensing after silicone embedment and has shown a sensitivity of about 8.7 nm/mN. Finally, the sensor has been tested on insertion into a human temporal bone, proving that it could be an interesting candidate for insertion force monitoring for robotic cochlear implantation.

22 citations

Patent
26 Sep 2007
TL;DR: In this article, a method for generating a synthetic wavelength, particularly for an interferometric distance measuring setup, with a primary laser source defining a primary frequency U0 and at least a first sideband frequency U1 of the primary frequency u1, is provided wherein the first side band frequency U 1 is continuously shifted, particularly by modulating the primary laser sources.
Abstract: In a method for generating a synthetic wavelength, particularly for an interferometric distance measuring setup, with a primary laser source defining a primary frequency U0 and at least a first sideband frequency U1 of the primary frequency U1, laser radiation with the first sideband frequency O1 and a corresponding first wavelength is provided wherein the first sideband frequency U1 is continuously shifted, particularly by modulating the primary laser source. The synthetic wavelength is generated by combining the first wavelength and a second wavelength which is defined by the primary laser source, particularly by superposition.

17 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The 2010 self-consistent set of values of the basic constants and conversion factors of physics and chemistry recommended by the Committee on Data for Science and Technology (CODATA) for international use is presented in this article.
Abstract: This paper gives the 2010 self-consistent set of values of the basic constants and conversion factors of physics and chemistry recommended by the Committee on Data for Science and Technology (CODATA) for international use. The 2010 adjustment takes into account the data considered in the 2006 adjustment as well as the data that became available from 1 January 2007, after the closing date of that adjustment, until 31 December 2010, the closing date of the new adjustment. Further, it describes in detail the adjustment of the values of the constants, including the selection of the final set of input data based on the results of least-squares analyses. The 2010 set replaces the previously recommended 2006 CODATA set and may also be found on the World Wide Web at physics.nist.gov/constants.

2,770 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate a coherent laser ranging system that combines the advantages of time-of-flight and interferometric approaches to provide absolute distance measurements, simultaneously from multiple reflectors, and at low power.
Abstract: The ability to determine absolute distance to an object is one of the most basic measurements of remote sensing. High-precision ranging has important applications in both large-scale manufacturing and in future tight formation-flying satellite missions, where rapid and precise measurements of absolute distance are critical for maintaining the relative pointing and position of the individual satellites. Using two coherent broadband fibre-laser frequency comb sources, we demonstrate a coherent laser ranging system that combines the advantages of time-of-flight and interferometric approaches to provide absolute distance measurements, simultaneously from multiple reflectors, and at low power. The pulse time-of-flight yields a precision of 3 µm with an ambiguity range of 1.5 m in 200 µs. Through the optical carrier phase, the precision is improved to better than 5 nm at 60 ms, and through the radio-frequency phase the ambiguity range is extended to 30 km, potentially providing 2 parts in 1013 ranging at long distances. Using two coherent broadband fibre-laser frequency comb sources, a coherent laser ranging system for absolute distance measurements is demonstrated. Its combination of precision, speed and long range may prove particularly useful for space-based sciences.

789 citations

Book
01 May 2011
TL;DR: In this paper, the authors present an overview of the solar system and its evolution, including the formation and evolution of stars, asteroids, and free-floating planets, as well as their internal and external structures.
Abstract: 1. Introduction 2. Radial velocities 3. Astrometry 4. Timing 5. Microlensing 6. Transits 7. Imaging 8. Host stars 9. Brown dwarfs and free-floating planets 10. Formation and evolution 11. Interiors and atmospheres 12. The Solar System Appendixes References Index.

527 citations

Journal ArticleDOI
23 Feb 2018-Science
TL;DR: Dual-comb distance measurements with Allan deviations down to 12 nanometers at averaging times of 13 microseconds along with ultrafast ranging at acquisition rates of 100 megahertz are demonstrated, allowing for in-flight sampling of gun projectiles moving at 150 meters per second.
Abstract: Light detection and ranging is widely used in science and industry. Over the past decade, optical frequency combs were shown to offer advantages in optical ranging, enabling fast distance acquisition with high accuracy. Driven by emerging high-volume applications such as industrial sensing, drone navigation, or autonomous driving, there is now a growing demand for compact ranging systems. Here, we show that soliton Kerr comb generation in integrated silicon nitride microresonators provides a route to high-performance chip-scale ranging systems. We demonstrate dual-comb distance measurements with Allan deviations down to 12 nanometers at averaging times of 13 microseconds along with ultrafast ranging at acquisition rates of 100 megahertz, allowing for in-flight sampling of gun projectiles moving at 150 meters per second. Combining integrated soliton-comb ranging systems with chip-scale nanophotonic phased arrays could enable compact ultrafast ranging systems for emerging mass applications.

521 citations