scispace - formally typeset
Search or ask a question
Author

Yvette Taché

Bio: Yvette Taché is an academic researcher from University of California, Los Angeles. The author has contributed to research in topics: Gastric emptying & Gastric acid. The author has an hindex of 73, co-authored 386 publications receiving 17839 citations. Previous affiliations of Yvette Taché include Université de Montréal & University of California.


Papers
More filters
Journal ArticleDOI
TL;DR: The results indicate the existence of a functional synergistic interaction between leptin and CCK leading to early suppression of food intake which involves CCK-A receptors and capsaicin-sensitive afferent fibers.
Abstract: Leptin is a circulating protein involved in the long-term regulation of food intake and body weight. Cholecystokinin (CCK) is released postprandially and elicits satiety signals. We investigated the interaction between leptin and CCK-8 in the short-term regulation of food intake induced by 24-hr fasting in lean mice. Leptin, injected intraperitoneally (i.p.) at low doses (4–120 μg/kg), which did not influence feeding behavior for the first 3 hr postinjection, decreased food intake dose dependently by 47–83% during the first hour when coinjected with a subthreshold dose of CCK. Such an interaction was not observed between leptin and bombesin. The food-reducing effect of leptin injected with CCK was not associated with alterations in gastric emptying or locomotor behavior. Leptin–CCK action was blocked by systemic capsaicin at a dose inducing functional ablation of sensory afferent fibers and by devazepide, a CCK-A receptor antagonist but not by the CCK-B receptor antagonist, L-365,260. The decrease in food intake which occurs 5 hr after i.p. injection of leptin alone was also blunted by devazepide. Coinjection of leptin and CCK enhanced the number of Fos-positive cells in the hypothalamic paraventricular nucleus by 60%, whereas leptin or CCK alone did not modify Fos expression. These results indicate the existence of a functional synergistic interaction between leptin and CCK leading to early suppression of food intake which involves CCK-A receptors and capsaicin-sensitive afferent fibers.

427 citations

Journal ArticleDOI
TL;DR: A multimodality treatment approach should include limiting the administration of agents known to contribute to postoperative ileus (narcotics), using thoracic epidurals with local anesthetics when possible, and selectively applying nasogastric decompression.
Abstract: Objective To review the pathogenesis and treatment of postoperative ileus. Data Sources Data collected for this review were identified from a MEDLINE database search of the English-language literature. The exact indexing terms were "postoperative ileus," "treatment," "etiology," and "pathophysiology." Previous review articles and pertinent references from those articles were also used. Study Selection All relevant studies were included. Only articles that were case presentations or that mentioned postoperative ileus in passing were excluded. Data Synthesis The pathogenesis of postoperative ileus is complex, with multiple factors contributing either simultaneously or at various times during the development of this entity. These factors include inhibitory effects of sympathetic input; release of hormones, neurotransmitters, and other mediators; an inflammatory reaction; and the effects of anesthetics and analgesics. Numerous treatments have been used to alleviate postoperative ileus without much success. Conclusions The etiology of postoperative ileus can best be described as multifactorial. A multimodality treatment approach should include limiting the administration of agents known to contribute to postoperative ileus (narcotics), using thoracic epidurals with local anesthetics when possible, and selectively applying nasogastric decompression.

406 citations

Journal ArticleDOI
TL;DR: Diet can affect GI transit through microbiota-dependent or microbiota-independent pathways, depending on the type of dietary change, and the effect of the microbiota on transit largely depends on the amount and type of polysaccharides present in the diet.

368 citations

Journal ArticleDOI
TL;DR: This review provides an overview of T GR5-bile acid interactions in health as well as the possible involvement of TGR5 in human disease.

338 citations

Journal ArticleDOI
TL;DR: Ghrelin induces Fos expression selectively in the ventromedial part of the hypothalamic arcuate nucleus (Arc) and indicates that NPY neurons in the Arc are likely the primary target mediating i.p. ghrelin induced orexigenic effect.

336 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The emerging concept of a microbiota–gut–brain axis suggests that modulation of the gut microbiota may be a tractable strategy for developing novel therapeutics for complex CNS disorders.
Abstract: Recent years have witnessed the rise of the gut microbiota as a major topic of research interest in biology. Studies are revealing how variations and changes in the composition of the gut microbiota influence normal physiology and contribute to diseases ranging from inflammation to obesity. Accumulating data now indicate that the gut microbiota also communicates with the CNS — possibly through neural, endocrine and immune pathways — and thereby influences brain function and behaviour. Studies in germ-free animals and in animals exposed to pathogenic bacterial infections, probiotic bacteria or antibiotic drugs suggest a role for the gut microbiota in the regulation of anxiety, mood, cognition and pain. Thus, the emerging concept of a microbiota-gut-brain axis suggests that modulation of the gut microbiota may be a tractable strategy for developing novel therapeutics for complex CNS disorders.

3,058 citations

Journal ArticleDOI
TL;DR: A review of available studies examining the human amygdala covers both lesion and electrical stimulation studies as well as the most recent functional neuroimaging studies, and attempts to integrate basic information on normal amygdala function with the current understanding of psychiatric disorders, including pathological anxiety.
Abstract: Here we provide a review of the animal and human literature concerning the role of the amygdala in fear conditioning, considering its potential influence over autonomic and hormonal changes, motor behavior and attentional processes. A stimulus that predicts an aversive outcome will change neural transmission in the amygdala to produce the somatic, autonomic and endocrine signs of fear, as well as increased attention to that stimulus. It is now clear that the amygdala is also involved in learning about positively valenced stimuli as well as spatial and motor learning and this review strives to integrate this additional information. A review of available studies examining the human amygdala covers both lesion and electrical stimulation studies as well as the most recent functional neuroimaging studies. Where appropriate, we attempt to integrate basic information on normal amygdala function with our current understanding of psychiatric disorders, including pathological anxiety.

2,781 citations

Journal ArticleDOI
TL;DR: The discovery of ghrelin indicates that the release of GH from the pituitary might be regulated not only by hypothalamic GH-releasing hormone, but also by gh Relin derived from the stomach, which plays important roles for maintaining GH release and energy homeostasis in vertebrates.
Abstract: Small synthetic molecules called growth hormone secretagogues (GHSs) stimulate the release of growth hormone (GH) from the pituitary. They act through the GHS-R, a G protein-coupled receptor whose ligand has only been discovered recently. Using a reverse pharmacology paradigm with a stable cell line expressing GHS-R, we purified an endogenous ligand for GHS-R from rat stomach and named it "ghrelin," after a word root ("ghre") in Proto-Indo-European languages meaning "grow." Ghrelin is a peptide hormone in which the third amino acid, usually a serine but in some species a threonine, is modified by a fatty acid; this modification is essential for ghrelin's activity. The discovery of ghrelin indicates that the release of GH from the pituitary might be regulated not only by hypothalamic GH-releasing hormone, but also by ghrelin derived from the stomach. In addition, ghrelin stimulates appetite by acting on the hypothalamic arcuate nucleus, a region known to control food intake. Ghrelin is orexigenic; it is secreted from the stomach and circulates in the bloodstream under fasting conditions, indicating that it transmits a hunger signal from the periphery to the central nervous system. Taking into account all these activities, ghrelin plays important roles for maintaining GH release and energy homeostasis in vertebrates.

2,740 citations

Journal ArticleDOI
TL;DR: A consensus-based approach was applied, supplemented by input from international experts who reviewed the report, and a dyspepsia subgroup classification is proposed for research purposes, based on the predominant (most bothersome) symptom.

2,428 citations

Journal ArticleDOI
TL;DR: Optimal basal activity and responsiveness of the stress system is essential for a sense of well-being, successful performance of tasks, and appropriate social interactions, which might impair development, growth and body composition, and lead to a host of behavioral and somatic pathological conditions.
Abstract: All organisms must maintain a complex dynamic equilibrium, or homeostasis, which is constantly challenged by internal or external adverse forces termed stressors. stress occurs when homeostasis is threatened or perceived to be so; homeostasis is re-established by various physiological and behavioral adaptive responses. Neuroendocrine hormones have major roles in the regulation of both basal homeostasis and responses to threats, and are involved in the pathogenesis of diseases characterized by dyshomeostasis or cacostasis. The stress response is mediated by the stress system, partly located in the central nervous system and partly in peripheral organs. The central, greatly interconnected effectors of this system include the hypothalamic hormones arginine vasopressin, corticotropin-releasing hormone and pro-opiomelanocortin- derived peptides, and the locus ceruleus and autonomic norepinephrine centers in the brainstem. Targets of these effectors include the executive and/or cognitive, reward and fear systems, the wake-sleep centers of the brain, the growth, reproductive and thyroid hormone axes, and the gastrointestinal, cardiorespiratory, metabolic, and immune systems. Optimal basal activity and responsiveness of the stress system is essential for a sense of well-being, successful performance of tasks, and appropriate social interactions. By contrast, excessive or inadequate basal activity and responsiveness of this system might impair development, growth and body composition, and lead to a host of behavioral and somatic pathological conditions.

2,350 citations