scispace - formally typeset
Search or ask a question
Author

Z.J. Chen

Bio: Z.J. Chen is an academic researcher. The author has contributed to research in topics: Acetylation & Regulation of gene expression. The author has an hindex of 1, co-authored 1 publications receiving 247 citations.

Papers
More filters
Journal Article
TL;DR: In this article, AtHD1 expression and deacetylation profiles were associated with various developmental abnormalities, including early senescence, ectopic expression of silenced genes, suppression of apical dominance, homeotic changes, heterochronic shift toward juvenility, flower defects, and male and female sterility.
Abstract: Histone acetylation and deacetylation play essential roles in eukaryotic gene regulation. Reversible modifications of core histones are catalyzed by two intrinsic enzymes, histone acetyltransferase and histone deacetylase (HD). In general, histone deacetylation is related to transcriptional gene silencing, whereas acetylation correlates with gene activation. We produced transgenic plants expressing the antisense Arabidopsis HD (AtHD1) gene. AtHD1 is a homolog of human HD1 and RPD3 global transcriptional regulator in yeast. Expression of the antisense AtHD1 caused dramatic reduction in endogenous AtHD1 transcription, resulting in accumulation of acetylated histones, notably tetraacetylated H4. Reduction in AtHD1 expression and AtHD1 production and changes in acetylation profiles were associated with various developmental abnormalities, including early senescence, ectopic expression of silenced genes, suppression of apical dominance, homeotic changes, heterochronic shift toward juvenility, flower defects, and male and female sterility. Some of the phenotypes could be attributed to ectopic expression of tissue-specific genes (e.g., SUPERMAN) in vegetative tissues. No changes in genomic DNA methylation were detected in the transgenic plants. These results suggest that AtHD1 is a global regulator, which controls gene expression during development through DNA-sequence independent or epigenetic mechanisms in plants. In addition to DNA methylation, histone modifications may be involved in a general regulatory mechanism responsible for plant plasticity and variation in nature.

247 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Comparative studies on stress-responsive epigenomes and transcriptomes will enhance the understanding of stress adaptation of plants.

1,003 citations

Journal ArticleDOI
22 Feb 2002-Cell
TL;DR: A self-reinforcing network of interactions among the three best-characterized covalent modifications that mark heterochromatin suggest a mechanistic basis for spreading of heterochromaatin over large domains and for stable epigenetic inheritance of the silent state.

879 citations

Journal ArticleDOI
TL;DR: This genome-wide map of SNP variation in sorghum provides a basis for crop improvement through marker-assisted breeding and genomic selection and traces the independent spread of multiple haplotypes carrying alleles for short stature or long inflorescence branches.
Abstract: Accelerating crop improvement in sorghum, a staple food for people in semiarid regions across the developing world, is key to ensuring global food security in the context of climate change. To facilitate gene discovery and molecular breeding in sorghum, we have characterized ∼265,000 single nucleotide polymorphisms (SNPs) in 971 worldwide accessions that have adapted to diverse agroclimatic conditions. Using this genome-wide SNP map, we have characterized population structure with respect to geographic origin and morphological type and identified patterns of ancient crop diffusion to diverse agroclimatic regions across Africa and Asia. To better understand the genomic patterns of diversification in sorghum, we quantified variation in nucleotide diversity, linkage disequilibrium, and recombination rates across the genome. Analyzing nucleotide diversity in landraces, we find evidence of selective sweeps around starch metabolism genes, whereas in landrace-derived introgression lines, we find introgressions around known height and maturity loci. To identify additional loci underlying variation in major agroclimatic traits, we performed genome-wide association studies (GWAS) on plant height components and inflorescence architecture. GWAS maps several classical loci for plant height, candidate genes for inflorescence architecture. Finally, we trace the independent spread of multiple haplotypes carrying alleles for short stature or long inflorescence branches. This genome-wide map of SNP variation in sorghum provides a basis for crop improvement through marker-assisted breeding and genomic selection.

730 citations

Journal ArticleDOI
16 Nov 2001-Cell
TL;DR: Vernalization induces a developmental state that is mitotically stable, suggesting that it may have an epigenetic basis, and VRN2 function stably maintains FLC repression after a cold treatment, serving as a mechanism for the cellular memory of vernalization.

577 citations

Journal ArticleDOI
TL;DR: It is suggested that leaf margin development is controlled by a two-step process in Arabidopsis, which involves coexpressed CUC2 and MIR164A and transcription gradually restricted to the sinus, where the leaf margins become serrated.
Abstract: CUP-SHAPED COTYLEDON1 (CUC1), CUC2, and CUC3 define the boundary domain around organs in the Arabidopsis thaliana meristem. CUC1 and CUC2 transcripts are targeted by a microRNA (miRNA), miR164, encoded by MIR164A, B, and C. We show that each MIR164 is transcribed to generate a large population of primary miRNAs of variable size with a locally conserved secondary structure around the pre-miRNA. We identified mutations in the MIR164A gene that deepen serration of the leaf margin. By contrast, leaves of plants overexpressing miR164 have smooth margins. Enhanced leaf serration was observed following the expression of an miR164-resistant CUC2 but not of an miR164-resistant CUC1. Furthermore, CUC2 inactivation abolished serration in mir164a mutants and the wild type, whereas CUC1 inactivation did not. Thus, CUC2 specifically controls leaf margin development. CUC2 and MIR164A are transcribed in overlapping domains at the margins of young leaf primordia, with transcription gradually restricted to the sinus, where the leaf margins become serrated. We suggest that leaf margin development is controlled by a two-step process in Arabidopsis. The pattern of serration is determined first, independently of CUC2 and miR164. The balance between coexpressed CUC2 and MIR164A then determines the extent of serration.

526 citations