scispace - formally typeset
Search or ask a question
Author

Z. Liu

Bio: Z. Liu is an academic researcher. The author has contributed to research in topics: Wireless network & Cellular network. The author has an hindex of 1, co-authored 1 publications receiving 566 citations.

Papers
More filters
Proceedings ArticleDOI
09 Jul 2003
TL;DR: This work considers two different routing strategies and study the scaling behavior of the throughput capacity of a hybrid network, finding that if m grows asymptotically slower than √n, the benefit of adding base stations on capacity is insignificant, however, ifm grows faster than ∞, the throughputcapacity increases linearly with the number of base stations, providing an effective improvement over a pure ad hoc network.
Abstract: This paper involves the study of the throughput capacity of hybrid wireless networks. A hybrid network is formed by placing a sparse network of base stations in an ad hoc network. These base stations are assumed to be connected by a high-bandwidth wired network and act as relays for wireless nodes. They are not data sources nor data receivers. Hybrid networks present a tradeoff between traditional cellular networks and pure ad hoc networks in that data may be forwarded in a multihop fashion or through the infrastructure. It has been shown that the capacity of a random ad hoc network does not scale well with the number of nodes in the system. In this work, we consider two different routing strategies and study the scaling behavior of the throughput capacity of a hybrid network. Analytical expressions of the throughput capacity are obtained. For a hybrid network of n nodes and m base stations, the results show that if m grows asymptotically slower than √n, the benefit of adding base stations on capacity is insignificant. However, if m grows faster than √n, the throughput capacity increases linearly with the number of base stations, providing an effective improvement over a pure ad hoc network. Therefore, in order to achieve nonnegligible capacity gain, the investment in the wired infrastructure should be high enough.

571 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper presents a detailed study on recent advances and open research issues in WMNs, followed by discussing the critical factors influencing protocol design and exploring the state-of-the-art protocols for WMNs.

4,205 citations

Book
05 Apr 2006
TL;DR: In this article, the authors present abstract models that capture the cross-layer interaction from the physical to transport layer in wireless network architectures including cellular, ad-hoc and sensor networks as well as hybrid wireless-wireline.
Abstract: Information flow in a telecommunication network is accomplished through the interaction of mechanisms at various design layers with the end goal of supporting the information exchange needs of the applications. In wireless networks in particular, the different layers interact in a nontrivial manner in order to support information transfer. In this text we will present abstract models that capture the cross-layer interaction from the physical to transport layer in wireless network architectures including cellular, ad-hoc and sensor networks as well as hybrid wireless-wireline. The model allows for arbitrary network topologies as well as traffic forwarding modes, including datagrams and virtual circuits. Furthermore the time varying nature of a wireless network, due either to fading channels or to changing connectivity due to mobility, is adequately captured in our model to allow for state dependent network control policies. Quantitative performance measures that capture the quality of service requirements in these systems depending on the supported applications are discussed, including throughput maximization, energy consumption minimization, rate utility function maximization as well as general performance functionals. Cross-layer control algorithms with optimal or suboptimal performance with respect to the above measures are presented and analyzed. A detailed exposition of the related analysis and design techniques is provided.

1,612 citations

Journal ArticleDOI
TL;DR: A comprehensive survey of available D2D related research works ranging from technical papers to experimental prototypes to standard activities is provided, and some open research problems which deserve further studies are outlined.
Abstract: Among the LTE-A communication techniques, Device-to-Device (D2D) communication which is defined to directly route data traffic between spatially closely located mobile user equipments (UEs), holds great promise in improving energy efficiency, throughput, delay, as well as spectrum efficiency As a combination of ad-hoc and centralized communication mechanisms, D2D communication enables researchers to merge together the long-term development achievements in previously disjoint domains of ad-hoc networking and centralized networking To help researchers to have a systematic understanding of the emerging D2D communication, we provide in this paper a comprehensive survey of available D2D related research works ranging from technical papers to experimental prototypes to standard activities, and outline some open research problems which deserve further studies

613 citations

Proceedings ArticleDOI
28 Aug 2005
TL;DR: It is shown that the capacity of multi-channel networks exhibits different bounds that are dependent on the ratio between c and m, which implies that it may be possible to build capacity-optimal multi- channel networks with as few as one interface per node.
Abstract: This paper studies how the capacity of a static multi-channel network scales as the number of nodes, n, increases. Gupta and Kumar have determined the capacity of single-channel networks, and those bounds are applicable to multi-channel networks as well, provided each node in the network has a dedicated interface per channel.In this work, we establish the capacity of general multi-channel networks wherein the number of interfaces, m, may be smaller than the number of channels, c. We show that the capacity of multi-channel networks exhibits different bounds that are dependent on the ratio between c and m. When the number of interfaces per node is smaller than the number of channels, there is a degradation in the network capacity in many scenarios. However, one important exception is a random network with up to O(log n) channels, wherein the network capacity remains at the Gupta and Kumar bound of Θ(W√noverlog n) bits/sec, independent of the number of interfaces available at each node. Since in many practical networks, number of channels available is small (e.g., IEEE 802.11 networks), this bound is of practical interest. This implies that it may be possible to build capacity-optimal multi-channel networks with as few as one interface per node. We also extend our model to consider the impact of interface switching delay, and show that in a random network with up to O(log n) channels, switching delay may not affect capacity if multiple interfaces are used.

586 citations

Proceedings ArticleDOI
13 Mar 2005
TL;DR: While it is proved that optimal deployment is very hard in general, it is also shown that only a modest number of reliable, long-range backhaul links and line-powered nodes are required to have a significant impact.
Abstract: The presence of heterogeneous nodes (i.e., nodes with an enhanced energy capacity or communication capability) in a sensor network is known to increase network reliability and lifetime. However, questions of where how many, and what types of heterogeneous resources to deploy remain largely unexplored. We focus on energy and link heterogeneity in ad hoc sensor networks and consider resource-aware MAC and routing protocols to utilize those resources. Using analysis, simulation, and real testbed measurements, we evaluate the impact of number and placement of heterogeneous resources on performance in networks of different sizes and densities. While we prove that optimal deployment is very hard in general, we also show that only a modest number of reliable, long-range backhaul links and line-powered nodes are required to have a significant impact. Properly deployed, heterogeneity can triple the average delivery rate and provide a 5-fold increase in the lifetime (respectively) of a large batten-powered network of simple sensors.

535 citations