scispace - formally typeset
Search or ask a question
Author

Z Q Wang

Bio: Z Q Wang is an academic researcher from Nanyang Technological University. The author has contributed to research in topics: Electrical discharge machining & Machining. The author has an hindex of 2, co-authored 2 publications receiving 300 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a feed-forward back-propagation neural network based on a central composite rotatable experimental design is developed to model the WEDM process, and an autoregressive AR(3) model is used to describe its stochastic component.
Abstract: Wire electrical discharge machining (WEDM) technology has been widely used in conductive material machining. The WEDM process, which is a combination of electrodynamic, electromagnetic, thermaldynamic, and hydrodynamic actions, exhibits a complex and stochastic nature. Its performance, in terms of surface finish and machining productivity, is affected by many factors. This paper presents an attempt at optimization of the process parametric combinations by modeling the process using artificial neural networks (ANN) and characterizes the WEDMed surface through time series techniques. A feed-forward back-propagation neural network based on a central composite rotatable experimental design is developed to model the machining process. Optimal parametric combinations are selected for the process. The periodic component of the surface texture is identified, and an autoregressive AR(3) model is used to describe its stochastic component.

158 citations

Journal ArticleDOI
TL;DR: In this paper, a response surface model based on a central composite rotatable experimental design and a 4-16-3 size back-propagation neural network have been developed.

157 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the vast array of research work carried out from the spin-off from the EDM process to the development of the WEDM, and highlighted the adaptive monitoring and control of the process investigating the feasibility of different control strategies of obtaining the optimal machining conditions.
Abstract: Wire electrical discharge machining (WEDM) is a specialised thermal machining process capable of accurately machining parts with varying hardness or complex shapes, which have sharp edges that are very difficult to be machined by the main stream machining processes. This practical technology of the WEDM process is based on the conventional EDM sparking phenomenon utilising the widely accepted non-contact technique of material removal. Since the introduction of the process, WEDM has evolved from a simple means of making tools and dies to the best alternative of producing micro-scale parts with the highest degree of dimensional accuracy and surface finish quality. Over the years, the WEDM process has remained as a competitive and economical machining option fulfilling the demanding machining requirements imposed by the short product development cycles and the growing cost pressures. However, the risk of wire breakage and bending has undermined the full potential of the process drastically reducing the efficiency and accuracy of the WEDM operation. A significant amount of research has explored the different methodologies of achieving the ultimate WEDM goals of optimising the numerous process parameters analytically with the total elimination of the wire breakages thereby also improving the overall machining reliability. This paper reviews the vast array of research work carried out from the spin-off from the EDM process to the development of the WEDM. It reports on the WEDM research involving the optimisation of the process parameters surveying the influence of the various factors affecting the machining performance and productivity. The paper also highlights the adaptive monitoring and control of the process investigating the feasibility of the different control strategies of obtaining the optimal machining conditions. A wide range of WEDM industrial applications are reported together with the development of the hybrid machining processes. The final part of the paper discusses these developments and outlines the possible trends for future WEDM research.

658 citations

Journal ArticleDOI
TL;DR: This paper surveys key advances in mechanical design and control of dynamic effects and nonlinearities, in the context of high-speed nanopositioning, as well as future challenges and research topics.
Abstract: Recent interest in high-speed scanning probe microscopy for high-throughput applications including video-rate atomic force microscopy and probe-based nanofabrication has sparked attention on the development of high-bandwidth flexure-guided nanopositioning systems (nanopositioners). Such nanopositioners are designed to move samples with sub-nanometer resolution with positioning bandwidth in the kilohertz range. State-of-the-art designs incorporate uniquely designed flexure mechanisms driven by compact and stiff piezoelectric actuators. This paper surveys key advances in mechanical design and control of dynamic effects and nonlinearities, in the context of high-speed nanopositioning. Future challenges and research topics are also discussed.

411 citations

Journal ArticleDOI
TL;DR: In this paper, the effect and optimization of machining parameters on the kerf (cutting width) and material removal rate (MRR) in wire electrical discharge machining (WEDM) operations were investigated.

345 citations

Journal ArticleDOI
TL;DR: In this paper, the authors highlight the development of mathematical models for correlating the interrelationships of various WEDM machining parameters of Inconel 601 material such as: peak current, duty factor, wire tension and water pressure on the metal removal rate, wear ratio and surface roughness.

283 citations

Journal ArticleDOI
TL;DR: In this paper, a multi response optimization method using Taguchi's robust design approach is proposed for wire electrical discharge machining (WEDM) operations, where the machining parameters are optimized with the multi response characteristics of the material removal rate, surface roughness, and wire wear ratio.
Abstract: In this present study a multi response optimization method using Taguchi’s robust design approach is proposed for wire electrical discharge machining (WEDM) operations. Experimentation was planned as per Taguchi’s L16 orthogonal array. Each experiment has been performed under different cutting conditions of pulse on time, wire tension, delay time, wire feed speed, and ignition current intensity. Three responses namely material removal rate, surface roughness, and wire wear ratio have been considered for each experiment. The machining parameters are optimized with the multi response characteristics of the material removal rate, surface roughness, and wire wear ratio. Multi response S/N (MRSN) ratio was applied to measure the performance characteristics deviating from the actual value. Analysis of variance (ANOVA) is employed to identify the level of importance of the machining parameters on the multiple performance characteristics considered. Finally experimental confirmation was carried out to identify the effectiveness of this proposed method. A good improvement was obtained.

246 citations