scispace - formally typeset
Search or ask a question
Author

Z.Y. Ma

Bio: Z.Y. Ma is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Friction stir processing & Friction stir welding. The author has an hindex of 44, co-authored 188 publications receiving 6368 citations.


Papers
More filters
Journal ArticleDOI
P. Xue1, Ni Dingrui1, Duoming Wang1, B.L. Xiao1, Z.Y. Ma1 
TL;DR: In this paper, the effect of welding parameters on surface morphology, interface microstructure and mechanical properties of 1060 aluminum alloy and commercially pure copper butted joints was investigated. Butt joints were produced by friction stir welding (FSW), and the results revealed that sound defect free joints could be obtained under larger pin offsets when the hard Cu plate was fixed at the advancing side.
Abstract: Butt joints of 1060 aluminum alloy and commercially pure copper were produced by friction stir welding (FSW) and the effect of welding parameters on surface morphology, interface microstructure and mechanical properties was investigated. The experimental results revealed that sound defect-free joints could be obtained under larger pin offsets when the hard Cu plate was fixed at the advancing side. Good tensile properties were achieved at higher rotation rates and proper pin offsets of 2 and 2.5 mm; further, the joint produced at 600 rpm with a pin offset of 2 mm could be bended to 180 degrees without fracture. The mechanical properties of the FSW Al-Cu joints were related closely to the interface microstructure between the Al matrix and Cu bulk. A thin, uniform and continuous intermetallic compound (IMC) layer at the Al-Cu butted interface was necessary for achieving sound FSW Al-Cu joints. Stacking layered structure developed at the Al-Cu interface under higher rotation rates, and crack initiated easily in this case, resulting in the poor mechanical properties. (C) 2011 Elsevier B.V. All rights reserved.

315 citations

Journal ArticleDOI
TL;DR: In this paper, aluminum and copper plates were successfully friction stir welded by offsetting the tool to the aluminum side, producing excellent metallurgical bonding on the Al-Cu interface with the formation of a thin, continuous and uniform Al-CIMC layer.
Abstract: Aluminum and copper plates were successfully friction stir welded by offsetting the tool to the aluminum side, producing excellent metallurgical bonding on the Al-Cu interface with the formation of a thin, continuous and uniform Al-Cu intermetallic compound (IMC) layer. Furthermore, many IMC particles were generated in the nugget zone, forming a composite structure. Tensile tests indicated that the FSW joint failed in the heat-affected zone of the aluminum side with the Al-Cu interface bonding strength being higher than 210 MPa. (C) 2010 Elsevier B.V. All rights reserved.

266 citations

Journal ArticleDOI
TL;DR: Friction stir welding (FSW) has been termed as green technology due to its energy efficiency and environment friendliness as mentioned in this paper, which is an enabling technology for joining metallic materials, in particular lightweight high-strength aluminum and magnesium alloys.
Abstract: Friction stir welding (FSW), a highly efficient solid-state joining technique, has been termed as “green” technology due to its energy efficiency and environment friendliness. It is an enabling technology for joining metallic materials, in particular lightweight high-strength aluminum and magnesium alloys which were classified as unweldable by traditional fusion welding. It is thus considered to be the most significant development in the area of material joining over the past two decades. Friction stir processing (FSP) was later developed based on the basic principles of FSW. FSP has been proven to be an effective and versatile metal-working technique for modifying and fabricating metallic materials. FSW/FSP of aluminum alloys has prompted considerable scientific and technological interest since it has a potential for revolutionizing the manufacturing process in the aerospace, defense, marine, automotive, and railway industries. To promote widespread applications of FSW/FSP technology and ensure t...

248 citations

Journal ArticleDOI
TL;DR: In this paper, the fracture paths correspond with the lowest hardness distribution profiles in the joints, and the heat indexes cannot be used as parameters to evaluate the thermal input, mechanical properties and fracture mode.

200 citations

Journal ArticleDOI
TL;DR: In this article, the defect-free pure copper welds were achieved under low heat input conditions of 400-800rpm for a traverse speed of 50mm min−1, where the grain size of the nugget zones decreased from 9 to 3.5μm.

170 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: A comprehensive body of knowledge has built up with respect to the friction stir welding (FSW) of aluminium alloys since the technique was invented in 1991 is reviewed in this article, including thermal history and metal flow, before discussing how process parameters affect the weld microstructure and the likelihood of entraining defects.
Abstract: The comprehensive body of knowledge that has built up with respect to the friction stir welding (FSW) of aluminium alloys since the technique was invented in 1991 is reviewed The basic principles of FSW are described, including thermal history and metal flow, before discussing how process parameters affect the weld microstructure and the likelihood of entraining defects After introducing the characteristic macroscopic features, the microstructural development and related distribution of hardness are reviewed in some detail for the two classes of wrought aluminium alloy (non-heat-treatable and heat-treatable) Finally, the range of mechanical properties that can be achieved is discussed, including consideration of residual stress, fracture, fatigue and corrosion It is demonstrated that FSW of aluminium is becoming an increasingly mature technology with numerous commercial applications In spite of this, much remains to be learned about the process and opportunities for further research a

956 citations

Journal ArticleDOI
TL;DR: In this paper, most of the significant phenomena that cause heating during microwave-material interaction and heat transfer during microwave energy absorption in materials are discussed. But, the mechanisms associated with the processing are less understood; popular mechanisms such as dipolar heating and conduction heating have been mostly explored.
Abstract: Efforts to use microwaves in material processing are gradually increasing. However, the phenomena associated with the processing are less understood; popular mechanisms such as dipolar heating and conduction heating have been mostly explored. The current paper reviews most of the significant phenomena that cause heating during microwave–material interaction and heat transfer during microwave energy absorption in materials. Mechanisms involved during interaction of microwave with characteristically different materials – metals, non-metals and composites (metal matrix composites, ceramic matrix composites and polymer matrix composites) have been discussed using suitable illustrations. It was observed that while microwave heating of metal based materials is due to the magnetic field based loss effects, dipolar loss and conduction loss are the phenomena associated with the electric field effects in microwave heating of non-metals. Challenges in processing of advanced materials, particularly composites have been identified from the available literature; further research directions with possible benefits have been highlighted.

502 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the evolution of hot deformed microstructures of a typical nickel-based superalloy by isothermal compression tests under the deformation temperature range of 920-1040°C and strain rate range of 0.001-1 s−1.

426 citations

Journal ArticleDOI
TL;DR: A comprehensive review of surface composites via friction stir processing is presented in this article, where the underlying mechanisms in strengthening of FSP-processed surface composite are discussed with reported models.

408 citations