scispace - formally typeset
Search or ask a question
Author

Z.Y. Pan

Bio: Z.Y. Pan is an academic researcher from Harbin Institute of Technology. The author has contributed to research in topics: Thermal barrier coating & Coating. The author has an hindex of 11, co-authored 13 publications receiving 630 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors investigated the thermal shock behavior of three as-sprayed TBCs at 1000°C and 1200°C with NiCrAlY as the bond coat, and the results indicated that the thermal cycling lifetime of the double-ceramic-layer (DCL) TBC is longer than that of SCL 8YSZ TBC due to the fact that the DCL LZ/8YSZ further enhance the thermal insulation effect, improve the sintering resistance ability and relieve the thermal mismatch between the ceramic layer and the metallic layer at

166 citations

Journal ArticleDOI
Lishuan Wang1, Y. Wang1, X.G. Sun1, J.Q. He1, Z.Y. Pan1, Yang Zhou1, P. L. Wu1 
TL;DR: In this paper, a finite element method was employed to simulate the thermal transfer behavior of TBCs with different spatial and geometrical characteristic of pores, and the simulation results indicated that the thermal insulation effect would be enhanced when the pore size, pore volume fraction and pore layers which are perpendicular to the thickness direction increase and the space between the adjacent pores decreases.

149 citations

Journal ArticleDOI
Liang Wang1, Y. Wang1, X.G. Sun1, J.Q. He1, Z.Y. Pan1, C.H. Wang1 
TL;DR: In this paper, the residual stress of double-ceramic-layer (DCL) La2Zr2O7/8YSZ thermal barrier coatings (TBCs) fabricated by atmospheric plasma spraying (APS) was calculated by finite element simulation using birth and death element technique.

90 citations

Journal ArticleDOI
29 Feb 2012-Vacuum
TL;DR: In this article, the elastic modulus, micro-hardness and Vickers hardness of nanostructured thermal barrier coatings (TBCs) exhibit bimodal distribution while the conventional 8YSZ exhibit mono-modal distribution.

82 citations

Journal ArticleDOI
TL;DR: In this paper, the thermal stress of the double-ceramic-layer (DCL) La2Zr2O7/8YSZ thermal barrier coatings (TBCs) fabricated by atmospheric plasma spraying (APS) during thermal shock has been calculated.

64 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors investigated the thermal shock behavior of three as-sprayed TBCs at 1000°C and 1200°C with NiCrAlY as the bond coat, and the results indicated that the thermal cycling lifetime of the double-ceramic-layer (DCL) TBC is longer than that of SCL 8YSZ TBC due to the fact that the DCL LZ/8YSZ further enhance the thermal insulation effect, improve the sintering resistance ability and relieve the thermal mismatch between the ceramic layer and the metallic layer at

166 citations

Journal ArticleDOI
TL;DR: In this paper, the authors evaluated and compared thermal shock behavior of plasma-sprayed nanostructured and conventional yttria stabilized zirconia (YSZ) thermal barrier coatings (TBCs).

143 citations

Journal ArticleDOI
TL;DR: A review on recent development of nanocomposite coatings is presented in this article, providing an overview of the nanocomposition coatings in various aspects dealing with the classification, preparative method, and characterization methods, and the potential applications in areas such as the anticorrosion, antiwear, superhydrophobic area, self-cleaning, antifouling/antibacterial area, and electronics.
Abstract: Incorporation of nanofillers into the organic coatings might enhance their barrier performance, by decreasing the porosity and zigzagging the diffusion path for deleterious species. Thus, the coatings containing nanofillers are expected to have significant barrier properties for corrosion protection and reduce the trend for the coating to blister or delaminate. On the other hand, high hardness could be obtained for metallic coatings by producing the hard nanocrystalline phases within a metallic matrix. This article presents a review on recent development of nanocomposite coatings, providing an overview of nanocomposite coatings in various aspects dealing with the classification, preparative method, the nanocomposite coating properties, and characterization methods. It covers potential applications in areas such as the anticorrosion, antiwear, superhydrophobic area, self-cleaning, antifouling/antibacterial area, and electronics. Finally, conclusion and future trends will be also reported.

138 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the research progress of the finite element modeling (FEM) on the study of the thermal insulation and associated failure problems of the TBCs and proposed a solution method based on the thermal-mechanical coupled technique.
Abstract: To understand the thermal insulation and failure problems of the thermal barrier coatings (TBCs) deeply is vital to evaluate the reliability and durability of the TBCs. Actually, experimental methods can not reflect the real case of the TBCs during its fabrication and service process. Finite element modeling (FEM) play an important role in studying these problems. Especially, FEM is very effective in calculating the thermal insulation and the fracture failure problems of the TBCs. In this paper, the research progress of the FEM on the study of the thermal insulation and associated failure problems of the TBCs has been reviewed. Firstly, from the aspect of the investigation of the heat insulation of the TBCs, the thermal analysis via FEM is widely used. The effective thermal conductivity, insulation temperature at different temperatures of the coating surface considering the thermal conduct, convection between the coating and the environment, heat radiation at high temperature and interfacial thermal resistance effect can be calculated by FEM. Secondly, the residual stress which is induced in the process of plasma spraying or caused by the thermal expansion coefficient mismatch between the coating and substrate and the temperature gradient variation under the actual service conditions can be also calculated via FEM. The solution method is based on the thermal–mechanical coupled technique. Thirdly, the failure problems of the TBCs under the actual service conditions can be calculated or simulated via FEM. The basic thought is using the fracture mechanic method. Previous investigation focused on the location of the maximum residual stress and try to find the possible failure positions of the TBCs, and to predict the possible failure modes of the TBCs. It belonged to static analysis. With the development of the FEM techniques, the virtual crack closure technique (VCCT), extended finite element method (XFEM) and cohesive zone model (CZM) have been used to simulate the crack propagation behavior of the TBCs. The failure patterns of the TBCs can be monitored timely and dynamically using these methods and the life prediction of the TBCs under the actual service conditions is expected to be realized eventually.

135 citations

Journal ArticleDOI
TL;DR: In this article, the authors used particle temperature measurements at different current levels to detect potential degrees of evaporation of Gd2Zr2O7 by atmospheric plasma spraying.
Abstract: Processing of Gd2Zr2O7 by atmospheric plasma spraying (APS) is challenging due to the difference in vapor pressure between gadolinia and zirconia. Gadolinia is volatilized to a greater extent than zirconia and the coating composition unfavorably deviates from the initial stoichiometry. Aiming at stoichiometric coatings, APS experiments were performed with a TriplexPro™ plasma torch at different current levels. Particle diagnostics proved to be an effective tool for the detection of potential degrees of evaporation via particle temperature measurements at these varied current levels. Optimized spray parameters for Gd2Zr2O7 in terms of porosity and stoichiometry were used to produce double-layer TBCs with an underlying yttria-stabilized zirconia (7YSZ) layer. For comparison, double layers were also deposited with relatively high torch currents during Gd2Zr2O7 deposition, which led to a considerable amount of evaporation and relatively low porosities. These coatings were tested in thermal cycling rigs at 1400°C surface temperature. Double layers manufactured with optimized Gd2Zr2O7 spray parameters revealed very good thermal cycling performance in comparison to standard 7YSZ coatings, whereas the others showed early failures. Furthermore, different failure modes were observed; coatings with long lifetime failed due to TGO growth, while the coatings displaying early failures spalled through crack propagation in the upper part of the 7YSZ layer.

135 citations