scispace - formally typeset
Search or ask a question
Author

Zahoor Ahmad

Bio: Zahoor Ahmad is an academic researcher from Kuwait University. The author has contributed to research in topics: Glass transition & Polyamide. The author has an hindex of 22, co-authored 60 publications receiving 1272 citations. Previous affiliations of Zahoor Ahmad include Martin Luther University of Halle-Wittenberg.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a transparent sol-gel-derived organic-inorganic nanocomposites were successfully prepared by in situ incorporation of a silica network into poly(trimethylhexamethylene terephthalamide) using diethylamine as catalyst.
Abstract: BACKGROUND: The physical properties of polyamides can be enhanced through incorporation of inorganic micro- and nanofillers such as silica nanoparticles. Transparent sol-gel-derived organic-inorganic nanocomposites were successfully prepared by in situ incorporation of a silica network into poly(trimethylhexamethylene terephthalamide) using diethylamine as catalyst. Thin films containing various proportions of inorganic network obtained by evaporating the solvent were characterized using mechanical, dynamic mechanical thermal and morphological analyses. RESULTS: Tensile measurements indicate that modulus as well as stress at yield and at break point improved while elongation at break and toughness decreased for the hybrid materials. The maximum value of stress at yield point (72 MPa) was observed with 10 wt% silica while the maximum stress at break point increased up to 66 MPa with 20 wt% silica relative to that of pure polyamide (44 MPa). Tensile modulus was found to increase up to 2.59 GPa with 10 wt% silica in the matrix. The glass transition temperature and the storage moduli increased with increasing silica content. The maximum increase in the Tg value (144 °C) was observed with 20 wt% silica. Scanning electron microscopy investigation gave the distribution of silica, with an average particle size ranging from 3 to 24 nm. CONCLUSION: These results demonstrate that nanocomposites with high mechanical strength can be prepared through a sol-gel process. The increase in the Tg values suggests better cohesion between the two phases, and the morphological results describe a uniform dispersion of silica particles in the polymer matrix at the nanoscale. Copyright © 2007 Society of Chemical Industry

79 citations

Journal ArticleDOI
TL;DR: In this paper, two types of hybrid epoxy-silica polymer films were obtained by hydrolysis and condensation of various amounts of tetraethoxysilane within epoxy network matrix.

75 citations

Journal ArticleDOI
TL;DR: In this paper, a soluble aromatic polyamide was successfully synthesized by solution polymerization and characterized, which was found to be soluble in dimethylacetamide, dimethyl sulfoxide, and dimethylformamide.
Abstract: Soluble aromatic polyamide chains were prepared by reacting 4–4′-oxydianiline with isophthaloyl chloride in dimethylacetamide. To quench the HCl produced during the polymerization reaction, a stoichiometric amount of triethylamine was added. The precipitates formed were separated leaving behind clear polyamide resin. Thin and transparent film was obtained by evaporating the solvent and was subjected for Fourier transform infrared (IR), nuclear magnetic resonance (NMR), gel permeation chromatography, thermogravimetric analysis, differential scanning calorimetry, water absorption, and mechanical analyses. The transparent film was found to be soluble in dimethylacetamide, dimethyl sulfoxide, and dimethylformamide. IR and NMR spectroscopic analyses confirmed the structure of the polyamide while the gel permeation chromatography revealed the formation of a high-molecular-weight polymer. Thermogravimetry, differential scanning calorimetry, water absorption, and mechanical testing were also performed to further verify its physical properties. A soluble aromatic polyamide was successfully synthesized by solution polymerization and characterized. The polyamide has film-forming property, and the film is transparent, mechanically strong, and thermally stable.

58 citations

Journal ArticleDOI
TL;DR: In this paper, the properties of polyimide-silica nanocomposites were studied as a function of silica content and compared with the one in which reinforcement of the polyimides was achieved using a pure silica network.
Abstract: Polyimide-silica nanocomposites have been prepared from an aromatic polyamic acid derived from pyromellitic dianhydride and oxydianiline and a silica network using the sol-gel reaction. Compatibilization of the two components was achieved by modifying the silica network with imide linkages. Morphology, thermal, and mechanical properties of these composite materials were studied as a function of silica content and compared with the one in which reinforcement of the polyimide was achieved using a pure silica network. There was considerable reduction in the silica particle size with more homogeneous distribution in the matrix when imide spacer groups were introduced in the silica network. The tan δ spectra obtained from dynamic thermal mechanical analysis shows a large increase in the glass transition temperature with increasing silica content for the compatibilized system in contrast to the un-compatibilized one. Mechanical properties of the polyimide composites improved due to better interaction between the organic and inorganic phases. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2521–2531, 2005

54 citations

Journal ArticleDOI
TL;DR: In this paper, the miscibility, morphology, and thermal properties of polyvinyl chloride (PVC) blends with different concentrations of poly(methyl methacylate) (PMMA) have been studied The interaction between the phases was studied by FTIR and by measuring the glass transition temperature (Tg) of the blends using differential scanning calorimetry Distribution of the phases at different compositions was studied through scanning electron microscopy.

54 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Characterization and Properties 3928 8.2.1.
Abstract: 5. In Situ Polymerization 3907 5.1. General Polymerization 3907 5.2. Photopolymerization 3910 5.3. Surface-Initiated Polymerization 3912 5.4. Other Methods 3913 6. Colloidal Nanocomposites 3913 6.1. Sol-Gel Process 3914 6.2. In Situ Polymerization 3916 6.2.1. Emulsion Polymerization 3917 6.2.2. Emulsifier-Free Emulsion Polymerization 3919 6.2.3. Miniemulsion Polymerization 3920 6.2.4. Dispersion Polymerization 3921 6.2.5. Other Polymerization Methods 3923 6.2.6. Conducting Nanocomposites 3924 6.3. Self Assembly 3926 7. Other Preparative Methods 3926 8. Characterization and Properties 3928 8.1. Chemical Structure 3928 8.2. Microstructure and Morphology 3929 8.3. Mechanical Properties 3933 8.3.1. Tensile, Impact, and Flexural Properties 3933 8.3.2. Hardness 3936 8.3.3. Fracture Toughness 3937 8.3.4. Friction and Wear Properties 3937 8.4. Thermal Properties 3938 8.5. Flame-Retardant Properties 3941 8.6. Optical Properties 3942 8.7. Gas Transport Properties 3943 8.8. Rheological Properties 3945 8.9. Electrical Properties 3945 8.10. Other Characterization Techniques 3946 9. Applications 3947 9.1. Coatings 3947 9.2. Proton Exchange Membranes 3948 9.3. Pervaporation Membranes 3948 9.4. Encapsulation of Organic Light-Emitting Devices 3948

1,915 citations

Journal ArticleDOI
TL;DR: In this paper, the surface of inorganic nanoparticles is modified to improve the interfacial interactions between the inorganic particles and the polymer matrix, which improves the properties of polymeric composites.

1,709 citations

Book ChapterDOI
22 Apr 2012
TL;DR: In this article, the electromagnetic spectrum in Figure 1 illustrates the many different types of electromagnetic radiation, including gamma rays (γ-rays), X-rays, ultraviolet (UV) radiation, visible light, infrared (IR), microwaves, and radio waves.
Abstract: Spectroscopy is the study of matter interacting with electromagnetic radiation (e.g., light). The electromagnetic spectrum in Figure 1 illustrates the many different types of electromagnetic radiation, including gamma rays (γ-rays), X-rays, ultraviolet (UV) radiation, visible light, infrared (IR) radiation, microwaves, and radio waves. The frequency (ν) and wavelength (λ) ranges associated with each form of radiant energy are also indicated in Figure 1.

849 citations

Journal ArticleDOI
TL;DR: In this paper, a high-performance organic material is considered to be highperformance organic materials due to their outstanding thermal and mechanical resistance, which result in stiff rod-like macromolecular chains that interact with each other via strong and highly directional hydrogen bonds.

556 citations

Journal ArticleDOI
22 Jun 2016-Ionics
TL;DR: In this article, the characteristics, advantages and applications for three types of polymer electrolytes: gel polymer electrolyte (GPE), solid polymeric electrolyte and composite polymeric polyester (PCP) are discussed.
Abstract: In this paper, we review different types of polymer electrolytes, recent approaches and technological applications of polymer electrolytes. The report first discusses the characteristics, advantages and applications for three types of polymer electrolytes: gel polymer electrolytes, solid polymer electrolytes and composite polymer electrolytes. Next, we discuss the features and performance of different polymer hosts based on some important and recently published literature. Recent progress of some approaches used in improving the performance of the polymer electrolytes is highlighted. The last part of the review includes the technological applications of some electrical energy storing/converting devices: electrochemical capacitors, batteries, fuel cells and dye-sensitized solar cells. It is also stressed that the technological advancement in the polymer electrolytes plays a pivotal role in the development of energy storing/converting systems.

448 citations