scispace - formally typeset
Search or ask a question
Author

Zbigniew Adamczyk

Bio: Zbigniew Adamczyk is an academic researcher from Polish Academy of Sciences. The author has contributed to research in topics: Adsorption & Particle. The author has an hindex of 42, co-authored 207 publications receiving 6248 citations.


Papers
More filters
Journal ArticleDOI
30 May 2008-Langmuir
TL;DR: The combination of dynamic viscosity and dynamic light scattering can be exploited as a convenient tool for detecting not only the onset of protein aggregation in suspensions but also the form and composition of these aggregates.
Abstract: In this work, physicochemical properties of two globular proteinsbovine serum albumin (BSA) having a molecular weight of 67 kDa and human serum albumin (HSA) having a molecular weight of 69 kDawere characterized. The bulk characteristics of these proteins involved the diffusion coefficient (hydrodynamic radius), electrophoretic mobility, and dynamic viscosity as a function of protein solution concentration for various pH values. The hydrodynamic radius data suggested an association of protein molecules, most probably forming compact dimers. Using the hydrodynamic diameter and the electropheretic mobility data allowed the determination of the number of uncompensated (electrokinetic) charges on protein surfaces. The electrophoretic mobility data were converted to zeta potential values, which allowed one to determine the isoelectric point (iep) of these proteins. It was found to be at pH 5.1 for both proteins, in accordance with previous experimental data and theoretical estimations derived from amino acid composition and p K values. To determine further the stability of protein solutions, dynamic viscosity measurements were carried out as a function of their bulk volume concentration for various pH values. The intrinsic viscosity derived from these measurements was interpreted in terms of the Brenner model, which is applicable to hard spheroidal particles. It was found that the experimental values of the intrinsic viscosity of these proteins were in good agreement with this model when assuming protein dimensions of 9.5 x 5 x 5 nm3 (prolate spheroid). The possibility of forming linear aggregates of association degree higher than 2 was excluded by these measurements. It was concluded that the combination of dynamic viscosity and dynamic light scattering can be exploited as a convenient tool for detecting not only the onset of protein aggregation in suspensions but also the form and composition of these aggregates.

340 citations

Journal ArticleDOI
TL;DR: In this article, the effect of repulsive electrostatic interaction among adsorbing particles was investigated and it was shown that these interactions diminish both the particle adsorption rate and the maximum surface concentration of particles forming "random" monolayers.

320 citations

Journal ArticleDOI
TL;DR: In this article, the electrostatic interactions between two planar double-layers described by the classical Poisson-Boltzmann (PB) equation were first discussed, and the approximate models for calculating interactions of curved interfaces (e.g. spheres) were exposed in some detail, inter alia the extended Derjaguin summation method and the linear superposition approach (LSA).

275 citations

Journal ArticleDOI
TL;DR: In this article, the role of double-layer interactions in adsorption of colloid particles at solid/liquid interface was reviewed and the range of validity of the approximate expression connecting the surface potential and the effective surface potential with surface charge for various electrolytes was estimated.

234 citations

Journal ArticleDOI
TL;DR: In this article, the 2D pair correlation functions were simulated by using the Monte Carlo technique for various surface concentrations θ and for various screening length parameters κα, characterizing the softness of the particle-particle interaction potential.

186 citations


Cited by
More filters
Book
01 Jan 1971
TL;DR: In this paper, Ozaki et al. describe the dynamics of adsorption and Oxidation of organic Molecules on Illuminated Titanium Dioxide Particles Immersed in Water.
Abstract: 1: Magnetic Particles: Preparation, Properties and Applications: M. Ozaki. 2: Maghemite (gamma-Fe2O3): A Versatile Magnetic Colloidal Material C.J. Serna, M.P. Morales. 3: Dynamics of Adsorption and Oxidation of Organic Molecules on Illuminated Titanium Dioxide Particles Immersed in Water M.A. Blesa, R.J. Candal, S.A. Bilmes. 4: Colloidal Aggregation in Two-Dimensions A. Moncho-Jorda, F. Martinez-Lopez, M.A. Cabrerizo-Vilchez, R. Hidalgo Alvarez, M. Quesada-PMerez. 5: Kinetics of Particle and Protein Adsorption Z. Adamczyk.

1,870 citations

Journal ArticleDOI
TL;DR: In this article, a review of the fundamental aspects of electrophoretic deposition technique, factors influencing the deposition process, kinetic aspects, types of EPD, the driving forces, preconditioning electrophoreic suspension, stability and control of suspension, mechanisms involved in EPD and drying of deposits obtained by EPD are discussed.

1,827 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the transport properties of 50-nm-high 1D nanochannels on a chip and showed that they can be used for the separation and preconcentration of proteins.
Abstract: This thesis explores transport phenomena in nanochannels on a chip. Fundamental nanofluidic ionic studies form the basis for novel separation and preconcentration applications for proteomic purposes. The measurements were performed with 50-nm-high 1D nanochannels, which are easily accessible from both sides by two microchannels. Nanometer characteristic apertures were manufactured in the bonded structure of Pyrex-amorphous silicon – Pyrex, in which the thickness of the amorphous silicon layer serves as a spacer to define the height of the nanochannels. The geometry of the nanometer-sized apertures is well defined, which simplifies the modeling of the transport across them. Compared to biological pores, the present nanochannels in Pyrex offer increased stability. Fundamental characteristics of nanometer-sized apertures were obtained by impedance spectroscopy measurements of the nanochannel at different ionic strengths and pH values. A conductance plateau (on a log-log scale) was modeled and measured, establishing due to the dominance of the surface charge density in the nanochannels, which induces an excess of mobile counterions to maintain electroneutrality. The nanochannel conductance can be regulated at low ionic strengths by pH adjustment, and by an external voltage applied on the chip to change the zeta potential. This field-effect allows the regulation of ionic flow which can be exploited for the fabrication of nanofluidic devices. Fluorescence measurements confirm that 50-nm-high nanochannels show an exclusion of co-ions and an enrichment of counterions at low ionic strengths. This permselectivity is related to the increasing thickness of the electrical double layer (EDL) with decreasing salt concentrations, which results in an EDL overlap in an aperture if the height of the nanochannel and the thickness of the EDL are comparable in size. The diffusive transport of charged species and therefore the exclusion-enrichment effect was described with a simple model based on the Poisson-Boltzmann equation. The negatively charged Pyrex surface of the nanometer characteristic apertures can be inversed with chemical surface pretreatments, resulting in an exclusion of cations and an enrichment of anions. When a pressure gradient is applied across the nanochannels, charged molecules are electrostatically rejected at the entrance of the nanometer-sized apertures, which can be used for separation processes. Proteomic applications are presented such as the separation and preconcentration of proteins. The diffusion of Lectin proteins with different isoelectric points and very similar compositions were controlled by regulating the pH value of the buffer. When the proteins are neutral at their pI value, the diffusion coefficient is maximal because the biomolecules does not interact electrostatically with the charged surfaces of the nanochannel. This led to a fast separation of three Lectin proteins across the nanochannel. The pI values measured in this experiment are slightly shifted compared to the values obtained with isoelectric focusing because of reversible adsorption of proteins on the walls which affects the pH value in the nanochannel. An important application in the proteomic field is the preconcentration of biomolecules. By applying an electric field across the nanochannel, anionic and cationic analytes were preconcentrated on the cathodic side of the nanometer-sized aperture whereas on the anodic side depletion of ions was observed. This is due to concentration polarization, a complex of effects related to the formation of ionic concentration gradients in the electrolyte solution adjacent to an ion-selective interface. It was measured that the preconcentration factor increased with the net charge of the molecule, leading to a preconcentration factor of > 600 for rGFP proteins in 9 minutes. Such preconcentrations are important in micro total analysis systems to achieve increased detection signals of analytes contained in dilute solutions. Compared to cylindrical pores, our fabrication process allows the realization of nanochannels on a chip in which the exclusion-enrichment effect and a big flux across the nanometer-sized aperture can be achieved, showing the interest for possible micro total analysis system applications. The described exclusion-enrichment effect as well as concentration polarization play an important role in transport phenomena in nanofluidics. The appendix includes preliminary investigations in DNA molecule separation and fluorescence correlation spectroscopy measurements, which allows investigating the behavior of molecules in the nanochannel itself.

1,636 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present theories describing colloid mobilization, deposition, and transport, laboratory experiments in model systems designed to test these theories, and applications of these theories to colloid-facilitated transport experiments in natural groundwater systems.

1,145 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the detailed understanding of asymptotic kinetics, spatial correlations, percolative structure, etc., which is emerging for these far-from-equilibrium processes.
Abstract: Irreversible random sequential adsorption (RSA) on lattices, and continuum "car parking" analogues, have long received attention as models for reactions on polymer chains, chemisorption on single-crystal surfaces, adsorption in colloidal systems, and solid state transformations. Cooperative generalizations of these models (CSA) are sometimes more appropriate, and can exhibit richer kinetics and spatial structure, e.g., autocatalysis and clustering. The distribution of filled or transformed sites in RSA and CSA is not described by an equilibrium Gibbs measure. This is the case even for the saturation "jammed" state of models where the lattice or space cannot fill completely. However exact analysis is often possible in one dimension, and a variety of powerful analytic methods have been developed for higher dimensional models. Here we review the detailed understanding of asymptotic kinetics, spatial correlations, percolative structure, etc., which is emerging for these far-from-equilibrium processes.

898 citations