scispace - formally typeset
Search or ask a question
Author

Zbigniew Kaczyński

Bio: Zbigniew Kaczyński is an academic researcher from University of Gdańsk. The author has contributed to research in topics: Polysaccharide & Medicine. The author has an hindex of 18, co-authored 57 publications receiving 1874 citations. Previous affiliations of Zbigniew Kaczyński include University Medical Center Freiburg.


Papers
More filters
Journal ArticleDOI
TL;DR: A complete chemical and physicochemical characterization of chitin, chitosan and their derivatives is not possible without using spectroscopic techniques, so this review focuses on the application of Spectroscopic methods for the structural analysis of these compounds.
Abstract: Chitin, the second most important natural polymer in the world, and its N-deacetylated derivative chitosan, have been identified as versatile biopolymers for a broad range of applications in medicine, agriculture and the food industry. Two of the main reasons for this are firstly the unique chemical, physicochemical and biological properties of chitin and chitosan, and secondly the unlimited supply of raw materials for their production. These polymers exhibit widely differing physicochemical properties depending on the chitin source and the conditions of chitosan production. The presence of reactive functional groups as well as the polysaccharide nature of these biopolymers enables them to undergo diverse chemical modifications. A complete chemical and physicochemical characterization of chitin, chitosan and their derivatives is not possible without using spectroscopic techniques. This review focuses on the application of spectroscopic methods for the structural analysis of these compounds.

848 citations

Journal ArticleDOI
TL;DR: The data suggest that the absence of d-alanine in LTA plays a role in environmental interactions, probably by modulating the net negative charge of the bacterial cell surface, and therefore it may be involved in the pathogenesis of this organism.
Abstract: Enterococcus faecalis is among the predominant causes of nosocomial infections. Surface molecules like d-alanine lipoteichoic acid (LTA) perform several functions in gram-positive bacteria, such as maintenance of cationic homeostasis and modulation of autolytic activities. The aim of the present study was to evaluate the effect of d-alanine esters of teichoic acids on biofilm production and adhesion, autolysis, antimicrobial peptide sensitivity, and opsonic killing. A deletion mutant of the dltA gene was created in a clinical E. faecalis isolate. The absence of d-alanine in the LTA of the dltA deletion mutant was confirmed by nuclear magnetic resonance spectroscopy. The wild-type strain and the deletion mutant did not show any significant differences in growth curve, morphology, or autolysis. However, the mutant produced significantly less biofilm when grown in the presence of 1% glucose (51.1% compared to that of the wild type); adhesion to eukaryotic cells was diminished. The mutant absorbed 71.1% of the opsonic antibodies, while absorption with the wild type resulted in a 93.2% reduction in killing. Sensitivity to several cationic antimicrobial peptides (polymyxin B, colistin, and nisin) was considerably increased in the mutant strain, confirming similar results from other studies of gram-positive bacteria. Our data suggest that the absence of d-alanine in LTA plays a role in environmental interactions, probably by modulating the net negative charge of the bacterial cell surface, and therefore it may be involved in the pathogenesis of this organism.

226 citations

Journal ArticleDOI
TL;DR: Results showed that bmimCl degradations in a Fenton-like system in excess H2O2 could be interpreted as a combined oxidation-reduction mechanism.

103 citations

Journal ArticleDOI
TL;DR: The E. faecalis strain 12030 enzyme-TA is structurally and immunologically identical to dealanylation LTA, and opsonic activity was inhibited completely by both alanylated and dealanylated BuOH-LTA.
Abstract: A teichoic acid (TA)-like polysaccharide in Enterococcus faecalis has previously been shown to induce opsonic antibodies that protect against bacteremia after active and passive immunization. Here we present new data providing a corrected structure of the antigen and the epitope against which the opsonic antibodies are directed. Capsular polysaccharide isolated from E. faecalis strain 12030 by enzymatic digestion of peptidoglycan and chromatography (enzyme-TA) was compared with lipoteichoic acid (LTA) extracted using butanol and purified by hydrophobic-interaction chromatography (BuOH-LTA). Structural determinations were carried out by chemical analysis and nuclear magnetic resonance spectroscopy. Antibody specificity was assessed by enzyme-linked immunosorbent assay and the opsonophagocytosis assay. After alanine ester hydrolysis, there was structural identity between enzyme-TA and BuOH-LTA of the TA-parts of the two molecules. The basic enterococcal LTA structure was confirmed: 1,3-poly(glycerol phosphate) nonstoichiometrically substituted at position C-2 of the glycerol residues with d-Ala and kojibiose. We also detected a novel substituent at position C-2, [d-Ala→6]-α-d-Glcp-(1→2-[d-Ala→6]-α-d-Glcp-1→). Antiserum raised against enzyme-TA bound equally well to BuOH-LTA and dealanylated BuOH-LTA as to the originally described enzyme-TA antigen. BuOH-LTA was a potent inhibitor of opsonophagocytic killing by the antiserum to enzyme-TA. Immunization with antibiotic-killed whole bacterial cells did not induce a significant proportion of antibodies directed against alanylated epitopes on the TA, and opsonic activity was inhibited completely by both alanylated and dealanylated BuOH-LTA. In summary, the E. faecalis strain 12030 enzyme-TA is structurally and immunologically identical to dealanylated LTA. Opsonic antibodies to E. faecalis 12030 are directed predominantly to nonalanylated epitopes on the LTA molecule.

99 citations

Journal ArticleDOI
TL;DR: It is shown that a highly mucoid strain of E. coli K-12 ligates CA repeats to a significant proportion of lipopolysaccharide (LPS) core acceptor molecules, forming the novel LPS glycoform, which has implications for potential underlying mechanisms coordinating the synthesis of various surface polysaccharides.

93 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review comprises the main characteristics of O2(•-) followed by generation methods, and its potential applications including the destruction of hazardous chemicals, synthesis of organic compounds, and many other applications are highlighted.
Abstract: Superoxide ion (O2•–) is of great significance as a radical species implicated in diverse chemical and biological systems. However, the chemistry knowledge of O2•– is rather scarce. In addition, numerous studies on O2•– were conducted within the latter half of the 20th century. Therefore, the current advancement in technology and instrumentation will certainly provide better insights into mechanisms and products of O2•– reactions and thus will result in new findings. This review emphasizes the state-of-the-art research on O2•– so as to enable researchers to venture into future research. It comprises the main characteristics of O2•– followed by generation methods. The reaction types of O2•– are reviewed, and its potential applications including the destruction of hazardous chemicals, synthesis of organic compounds, and many other applications are highlighted. The O2•– environmental chemistry is also discussed. The detection methods of O2•– are categorized and elaborated. Special attention is given to the f...

1,356 citations

Journal ArticleDOI
TL;DR: The achievements and current status of environmental risk assessment of ILs are reviewed, and hopefully this article provides insights into this research frontier.

1,330 citations

Journal ArticleDOI
TL;DR: The factors involved in the changing epidemiology of enterococcal infections are discussed, with an emphasis on Enterococcus faecium as an emergent and challenging nosocomial problem.
Abstract: Arias and Murray discuss the factors that may have contributed to the rise of enterococci as nosocomial pathogens, with an emphasis on the epidemiology and pathogenesis of these species and their mechanisms of resistance to the most relevant anti-enterococcal agents used in clinical practice.

1,276 citations

Journal ArticleDOI
TL;DR: The fundamental pathogenic mechanisms underlying implant infections are explored, highlighting orthopaedic implants and Staphylococcus aureus as a prime example, and innovative targets for preventive and therapeutic strategies are discussed.
Abstract: Medical device-associated infections account for a large proportion of hospital-acquired infections. A variety of opportunistic pathogens can cause implant infections, depending on the type of the implant and on the anatomical site of implantation. The success of these versatile pathogens depends on rapid adhesion to virtually all biomaterial surfaces and survival in the hostile host environment. Biofilm formation on implant surfaces shelters the bacteria and encourages persistence of infection. Furthermore, implant-infecting bacteria can elude innate and adaptive host defences as well as biocides and antibiotic chemotherapies. In this Review, we explore the fundamental pathogenic mechanisms underlying implant infections, highlighting orthopaedic implants and Staphylococcus aureus as a prime example, and discuss innovative targets for preventive and therapeutic strategies.

1,146 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarize the formation reactions of the hydroxyl radical (·OH) and the mechanisms of pollutants degradation in six types of advanced oxidation processes, including radiation, photolysis and photocatalysis, sonolysis, electrochemical oxidation technologies, Fenton based reactions, and ozone-based processes.
Abstract: Advanced oxidation processes (AOPs), defined as those technologies that utilize the hydroxyl radical (·OH) for oxidation, have received increasing attention in the research and development of wastewater treatment technologies in the last decades. These processes have been applied successfully for the removal or degradation of toxic pollutants or used as pretreatment to convert recalcitrant pollutants into biodegradable compounds that can then be treated by conventional biological methods. The efficacy of AOPs depends on the generation of reactive free radicals, the most important of which is the hydroxyl radical (·OH). The authors summarize the formation reactions of ·OH and the mechanisms of pollutants degradation. They cover six types of advanced oxidation processes, including radiation, photolysis and photocatalysis, sonolysis, electrochemical oxidation technologies, Fenton-based reactions, and ozone-based processes. Controversial issues in pollutants degradation mechanism were discussed. They review t...

1,102 citations