scispace - formally typeset
Search or ask a question
Author

Zdenek P. Bazant

Bio: Zdenek P. Bazant is an academic researcher from Northwestern University. The author has contributed to research in topics: Creep & Fracture mechanics. The author has an hindex of 82, co-authored 301 publications receiving 20908 citations. Previous affiliations of Zdenek P. Bazant include École Polytechnique Fédérale de Lausanne & Rensselaer Polytechnic Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an extension of the microprestress-solidification theory (XMPS) is presented, which overcomes both problems and also improves a few other features of the model response.
Abstract: The solidification theory has been accepted as a thermodynamically sound way to describe the creep reduction due to deposition of hydrated material in the pores of concrete. The concept of self-equilibrated nanoscale microprestress has been accepted as a viable model for marked multi-decade decline of creep viscosity after the hydration effect became too feeble, and for increase of creep viscosity after any sudden change of pore humidity or temperature. Recently, though, it appeared that the original microprestress-solidification theory (MPS) predicts incorrectly the diffusion size effect on drying creep and the delay of drying creep behind drying shrinkage. Presented here is an extension (XMPS) that overcomes both problems and also improves a few other features of the model response. To this end, different nano- and macro-scale viscosities are distinguished. The aforementioned incorrect predictions are overcome by a dependence of the macro-scale viscosity on the rate of pore humidity change, which is a new feature inspired by previous molecular dynamics (MD) simulations of a molecular layer of water moving between two parallel sliding C-S-H sheets. The aging is based on calculating the hydration degree, and the temperature change effect on pore relative humidity is taken into account. Empirical formula for estimating the parameters of permeability dependence on pore humidity from concrete mix composition are also developed. Extensive validations by pertinent test data from the literature are demonstrated.

24 citations

Journal Article
TL;DR: In this article, a finite-element study of the size effect of compressive failure of geometrically similar concrete columns of different sizes is presented, based on the crack-band concept.
Abstract: Failure of concrete structures due to concrete failing in compression was recently shown to exhibit a size effect. This is not taken into account by current design codes based on failure criteria expressed in terms of strength of plasticity. However, compressive failure of concrete cannot be described by strength criteria, since it is brittle and is caused by release of elastic strain energy stored in the structure. In this sense, it is similar to tensile failure governed by fracture mechanics. This paper presents a finite-element study of the size effect of compressive failure of geometrically similar concrete columns of different sizes. The test columns considered here are reduced-scale specimens made with micro-concrete of maximum aggregate size 3.35 mm and are loaded eccentrically. The analysis employs the microplane model for concrete, is based on the crack-band concept, and is shown to capture with good approximation the size effect observed experimentally.

24 citations

Journal ArticleDOI
TL;DR: In this paper, closed-form solutions are presented for the transient response of rods in which strain softening occurs and the stress-strain laws exhibit nonvanishing stresses after the strain-softening regime.
Abstract: Closed-form solutions are presented for the transient response of rods in which strain softening occurs and the stress-strain laws exhibit nonvanishing stresses after the strain-softening regime. It is found that the appearance of any strain softening results in an infinite strain rate if the material is inviscid. For a stress-strain law with a monotonically decreasing stress the strains are infinite also. If the stress increases after the strain-softening portion, the strains remain finite and the strain-softening point moves through the rod.

24 citations

Journal ArticleDOI
TL;DR: In this paper, a consistent theory for the analysis of curvature and deflection of reinforced concrete beams in the cracking stage is presented, which assumes concrete to have a nonzero tensile carrying capacity, characterized by a uniaxial stress-strain diagram which characterizes progressive microcracking due to strain softening.
Abstract: A consistent theory for the analysis of curvature and deflections of reinforced concrete beams in the cracking stage is presented. The theory assumes concrete to have a nonzero tensile carrying capacity, characterized by a uniaxial stress-strain diagram which characterizes progressive microcracking due to strain softening. The tensile stressstrain properties are the same as those which are obtained in direct tensile tests and those which have recently been used with success in modeling fracture test results for concrete. The theory agrees well with the simpler formula of Branson within the range for which his formula is intended. The value of the proposed theory is its much broader applicability. Aside from demonstrating a good agreement with available test data for short-time deformations up to the ultimate load, it is shown that the theory also correctly predicts the longtime creep deformations of cracked beams. To this end, the average creep coefficient for tensile response including peak stress and strain softening needs to be taken about three times larger than that for compression states. The theory also predicts the reduction of creep deflections achieved by the use of compression reinforcement, and a comparison of modeling this effect is made with an ACI formula. As a simplified version of the model, it is proposed to replace the tensile strain-softening behavior by the use of an equivalent tensile area of concrete at the level of tensile steel, behaving linearly. Assuming this area to be a constant, realistic predictions for shorttime as well as longtime deformations in the service stress range can still be obtained.

23 citations

Journal ArticleDOI
TL;DR: In this article, a linearized incremental solution is obtained taking into account geometrical nonlinearity of strain, and the stability condition is shown to depend on the ratio of the layer thickness to the softening band thickness.
Abstract: Distributed damage such as cracking in heterogeneous brittle materials may be ap­ proximately described by a strain-softening continuum. To make analytical solu­ tions feasible, the continuum is assumed to be local but localization of softening strain into a region of vanishing volume is precluded by requiring that the softening region, assumed to be in a state of homogeneous strain, must have a certain minimum thickness which is a material property. Exact conditions of stability of an initially uniform strain field against strain localization are obtained for the case of an infinite layer in which the strain localizes into an infinite planar band. First, the problem is solved for small strain. Then a linearized incremental solution is obtained taking into account geometrical nonlinearity of strain. The stability condition is shown to depend on the ratio of the layer thickness to the softening band thickness. It is found that if this ratio is not too large compared to J, the state of homogeneous strain may be stable well into the softening range. Part II of this study applies Eshelby's theorem to determine the conditions of localization into ellipsoidal regions in infinite space, and also solves localization into circular or spherical regions in finite bodies.

23 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a stress-strain model for concrete subjected to uniaxial compressive loading and confined by transverse reinforcement is developed for concrete sections with either spiral or circular hoops, or rectangular hoops with or without supplementary cross ties.
Abstract: A stress‐strain model is developed for concrete subjected to uniaxial compressive loading and confined by transverse reinforcement. The concrete section may contain any general type of confining steel: either spiral or circular hoops; or rectangular hoops with or without supplementary cross ties. These cross ties can have either equal or unequal confining stresses along each of the transverse axes. A single equation is used for the stress‐strain equation. The model allows for cyclic loading and includes the effect of strain rate. The influence of various types of confinement is taken into account by defining an effective lateral confining stress, which is dependent on the configuration of the transverse and longitudinal reinforcement. An energy balance approach is used to predict the longitudinal compressive strain in the concrete corresponding to first fracture of the transverse reinforcement by equating the strain energy capacity of the transverse reinforcement to the strain energy stored in the concret...

6,261 citations

Journal ArticleDOI
TL;DR: In this paper, a numerical model for rock is proposed in which the rock is represented by a dense packing of non-uniform-sized circular or spherical particles that are bonded together at their contact points and whose mechanical behavior is simulated by the distinct element method using the two-and three-dimensional discontinuum programs PFC2D and PFC3D.

3,470 citations

Journal ArticleDOI
01 May 1983
TL;DR: In this article, a fracture theory for a heterogenous aggregate material which exhibits a gradual strain-softening due to microcracking and contains aggregate pieces that are not necessarily small compared to structural dimensions is developed.
Abstract: A fracture theory for a heterogenous aggregate material which exhibits a gradual strain-softening due to microcracking and contains aggregate pieces that are not necessarily small compared to structural dimensions is developed. Only Mode I is considered. The fracture is modeled as a blunt smeard crack band, which is justified by the random nature of the microstructure. Simple triaxial stress-strain relations which model the strain-softening and describe the effect of gradual microcracking in the crack band are derived. It is shown that it is easier to use compliance rather than stiffness matrices and that it suffices to adjust a single diagonal term of the complicance matrix. The limiting case of this matrix for complete (continuous) cracking is shown to be identical to the inverse of the well-known stiffness matrix for a perfectly cracked material. The material fracture properties are characterized by only three parameters—fracture energy, uniaxial strength limit and width of the crack band (fracture process zone), while the strain-softening modulus is a function of these parameters. A method of determining the fracture energy from measured complete stres-strain relations is also given. Triaxial stress effects on fracture can be taken into account. The theory is verified by comparisons with numerous experimental data from the literature. Satisfactory fits of maximum load data as well as resistance curves are achieved and values of the three material parameters involved, namely the fracture energy, the strength, and the width of crack band front, are determined from test data. The optimum value of the latter width is found to be about 3 aggregate sizes, which is also justified as the minimum acceptable for a homogeneous continuum modeling. The method of implementing the theory in a finite element code is also indicated, and rules for achieving objectivity of results with regard to the analyst's choice of element size are given. Finally, a simple formula is derived to predict from the tensile strength and aggregate size the fracture energy, as well as the strain-softening modulus. A statistical analysis of the errors reveals a drastic improvement compared to the linear fracture theory as well as the strength theory. The applicability of fracture mechanics to concrete is thus solidly established.

3,102 citations

Journal ArticleDOI
TL;DR: In this article, a constitutive model based on an internal variable-formulation of plasticity theory for the non-linear analysis of concrete is presented, which uses a new yield criterion which matches experimental data quite well and it accounts for both elastic and plastic stiffness degradations effects.

3,080 citations