scispace - formally typeset
Search or ask a question
Author

Zdenek P. Bazant

Bio: Zdenek P. Bazant is an academic researcher from Northwestern University. The author has contributed to research in topics: Creep & Fracture mechanics. The author has an hindex of 82, co-authored 301 publications receiving 20908 citations. Previous affiliations of Zdenek P. Bazant include École Polytechnique Fédérale de Lausanne & Rensselaer Polytechnic Institute.


Papers
More filters
01 Jan 1975
TL;DR: In this article, the near-tip angular variations of elastodynamic stress and displacement fields are investigated for rapid transient crack propagation in isotropic and orthotropic materials, and it is shown that p = 0.5.
Abstract: The near-tip angular variations of elastodynamic stress and displacement fields are investigated for rapid transient crack propagation in isotropic and orthotropic materials. The 2-dimensional near-tip displacement fields are assumed in the general form r/sup P/ T(t, c) K(theta, c), where c is a time-varying velocity of crack propagation, and it is shown that p = 0.5. For isotropic materials, K(theta, c) is determined explicitly by analytical considerations. A numerical procedure is employed to determine K(theta, c) for orthotropic materials. The tendency of the maximum stresses to move out of the plane of crack propagation as the speed of crack propagation increases is more pronounced for orthotropic materials, for the case that the crack propagates in the direction of the larger elastic modulus. The angular variations of the near-tip fields are the same for steady-state and transient crack propagation, and for propagation along straight and curved paths, provided that the direction of crack propagation and the speed of the crack tip vary continuously.

5 citations

01 Jan 1999
TL;DR: In this paper, the authors discuss the problem of formulation and evaluation of a prediction model for creep and shrinkage of concrete, and propose three criteria: (1) after optimizing its coefficients, the model should be capable of providing close fits of the individual test data covering a broad range of times, ages, humidities, thicknesses etc.
Abstract: The paper discusses the problem of formulation and evaluation of a prediction model for creep and shrinkage of concrete. Verification by comparisons to a few subjectively selected data sets is no longer justifiable because computers have made statistical comparisons to the complete existing data bank easy. However, statistics based on the data bank are insufficient. There are three further criteria : (1) After optimizing its coefficients, the model should be capable of providing close fits of the individual test data covering a broad range of times, ages, humidities, thicknesses, etc. ; (2) the model should have a rational, physically justified theoretical basis, and (3) should allow good and easy extrapolation of the short-time tests into long times, high ages at loading, large thicknesses etc. The last criterion is very important because good long-time predictions can be achieved only through updating based on short-time data for the given particular concrete. Various aspects of the B3 and GZ models recently considered by ACI Committee 209, as well as some aspects of the CEF-FIP model, are briefly analyzed in the light of these criteria, clarifying the way to move ahead.

5 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a stress-strain model for concrete subjected to uniaxial compressive loading and confined by transverse reinforcement is developed for concrete sections with either spiral or circular hoops, or rectangular hoops with or without supplementary cross ties.
Abstract: A stress‐strain model is developed for concrete subjected to uniaxial compressive loading and confined by transverse reinforcement. The concrete section may contain any general type of confining steel: either spiral or circular hoops; or rectangular hoops with or without supplementary cross ties. These cross ties can have either equal or unequal confining stresses along each of the transverse axes. A single equation is used for the stress‐strain equation. The model allows for cyclic loading and includes the effect of strain rate. The influence of various types of confinement is taken into account by defining an effective lateral confining stress, which is dependent on the configuration of the transverse and longitudinal reinforcement. An energy balance approach is used to predict the longitudinal compressive strain in the concrete corresponding to first fracture of the transverse reinforcement by equating the strain energy capacity of the transverse reinforcement to the strain energy stored in the concret...

6,261 citations

Journal ArticleDOI
TL;DR: In this paper, a numerical model for rock is proposed in which the rock is represented by a dense packing of non-uniform-sized circular or spherical particles that are bonded together at their contact points and whose mechanical behavior is simulated by the distinct element method using the two-and three-dimensional discontinuum programs PFC2D and PFC3D.

3,470 citations

Journal ArticleDOI
01 May 1983
TL;DR: In this article, a fracture theory for a heterogenous aggregate material which exhibits a gradual strain-softening due to microcracking and contains aggregate pieces that are not necessarily small compared to structural dimensions is developed.
Abstract: A fracture theory for a heterogenous aggregate material which exhibits a gradual strain-softening due to microcracking and contains aggregate pieces that are not necessarily small compared to structural dimensions is developed. Only Mode I is considered. The fracture is modeled as a blunt smeard crack band, which is justified by the random nature of the microstructure. Simple triaxial stress-strain relations which model the strain-softening and describe the effect of gradual microcracking in the crack band are derived. It is shown that it is easier to use compliance rather than stiffness matrices and that it suffices to adjust a single diagonal term of the complicance matrix. The limiting case of this matrix for complete (continuous) cracking is shown to be identical to the inverse of the well-known stiffness matrix for a perfectly cracked material. The material fracture properties are characterized by only three parameters—fracture energy, uniaxial strength limit and width of the crack band (fracture process zone), while the strain-softening modulus is a function of these parameters. A method of determining the fracture energy from measured complete stres-strain relations is also given. Triaxial stress effects on fracture can be taken into account. The theory is verified by comparisons with numerous experimental data from the literature. Satisfactory fits of maximum load data as well as resistance curves are achieved and values of the three material parameters involved, namely the fracture energy, the strength, and the width of crack band front, are determined from test data. The optimum value of the latter width is found to be about 3 aggregate sizes, which is also justified as the minimum acceptable for a homogeneous continuum modeling. The method of implementing the theory in a finite element code is also indicated, and rules for achieving objectivity of results with regard to the analyst's choice of element size are given. Finally, a simple formula is derived to predict from the tensile strength and aggregate size the fracture energy, as well as the strain-softening modulus. A statistical analysis of the errors reveals a drastic improvement compared to the linear fracture theory as well as the strength theory. The applicability of fracture mechanics to concrete is thus solidly established.

3,102 citations

Journal ArticleDOI
TL;DR: In this article, a constitutive model based on an internal variable-formulation of plasticity theory for the non-linear analysis of concrete is presented, which uses a new yield criterion which matches experimental data quite well and it accounts for both elastic and plastic stiffness degradations effects.

3,080 citations