scispace - formally typeset
Search or ask a question
Author

Zdenek Sedlacek

Bio: Zdenek Sedlacek is an academic researcher from Charles University in Prague. The author has contributed to research in topics: Gene & Germline mutation. The author has an hindex of 27, co-authored 73 publications receiving 15743 citations. Previous affiliations of Zdenek Sedlacek include University of California, Irvine & Lincoln's Inn.


Papers
More filters
Journal ArticleDOI
26 Mar 1993-Cell
TL;DR: In this article, the authors used haplotype analysis of linkage disequilibrium to spotlight a small segment of 4p16.3 as the likely location of the defect, which is expanded and unstable on HD chromosomes.

7,224 citations

Journal Article
25 Mar 1993-Cell
TL;DR: The Huntington's disease mutation involves an unstable DNA segment, similar to those described in fragile X syndrome, spino-bulbar muscular atrophy, and myotonic dystrophy, acting in the context of a novel 4p16.3 gene to produce a dominant phenotype.

6,992 citations

Journal ArticleDOI
TL;DR: Support for a domain-like conservation pattern of the long 3"-UTR of the MeCP2 gene was obtained by examining conservation in the chimpanzee, orangutan, macaque, hamster, rat and kangaroo.
Abstract: A systematic search for expressed sequences in the human Xq28 region resulted in the isolation of 8.5 kb large contigs of human and murine cDNAs with no apparent conserved open reading frames. These cDNAs were found to be derived from the 3"-untranslated region (3"-UTR) of the methyl-CpG-binding protein 2 gene ( MeCP2 ). This long 3"-UTR is part of an alternatively polyadenylated, 10.1 kb MeCP2 transcript which is differentially expressed in human brain and other tissues. RNA in situ hybridization to sections of mouse embryo and adult tissues of an Mecp2 3"-UTR probe showed ubiquitous low level expression in early organogenesis and enhanced expression in the hippocampus during formation of the differentiated brain. Sequence comparison between the human and mouse homologues revealed several blocks of very high conservation separated by less conserved sequences. Additional support for a domain-like conservation pattern of the long 3"-UTR of the MeCP2 gene was obtained by examining conservation in the chimpanzee, orangutan, macaque, hamster, rat and kangaroo. The minimum free energy distribution for the predicted RNA secondary structure was very similar in human and mouse sequences. In particular, the conserved blocks were predicted to be of high minimum free energy, which suggests weak secondary structure with respect to RNA folding. The fact that both the sequence and predicted secondary structure have been highly conserved during evolution suggests that both the primary sequence and the three-dimensional structure of the 3"-UTR may be important for its function in post-transcriptional regulation of MeCP2 expression.

147 citations

Journal ArticleDOI
TL;DR: Overall, significant clustering of de novo mutations in 200 genes is found, highlighting specific functional domains and synaptic candidate genes important in NDD pathology.
Abstract: Although de novo missense mutations have been predicted to account for more cases of autism than gene-truncating mutations, most research has focused on the latter. We identified the properties of de novo missense mutations in patients with neurodevelopmental disorders (NDDs) and highlight 35 genes with excess missense mutations. Additionally, 40 amino acid sites were recurrently mutated in 36 genes, and targeted sequencing of 20 sites in 17,688 patients with NDD identified 21 new patients with identical missense mutations. One recurrent site substitution (p.A636T) occurs in a glutamate receptor subunit, GRIA1. This same amino acid substitution in the homologous but distinct mouse glutamate receptor subunit Grid2 is associated with Lurcher ataxia. Phenotypic follow-up in five individuals with GRIA1 mutations shows evidence of specific learning disabilities and autism. Overall, we find significant clustering of de novo mutations in 200 genes, highlighting specific functional domains and synaptic candidate genes important in NDD pathology.

135 citations

Journal ArticleDOI
TL;DR: The identification of multiple patients with different patterns of CCG and CTC interruptions in the DMPK CTG repeat tract that display unique intergenerational instability has important consequences for molecular genetic testing where they can lead to false negative conclusions.
Abstract: Myotonic dystrophy type 1 is caused by the expansion of a CTG repeat in the 3′ UTR of the DMPK gene. A length exceeding 50 CTG triplets is pathogenic. Intermediate alleles with 35–49 triplets are not disease-causing but show instability in intergenerational transmissions. We report on the identification of multiple patients with different patterns of CCG and CTC interruptions in the DMPK CTG repeat tract that display unique intergenerational instability. In patients bearing interrupted expanded alleles, the location of the interruptions changed dramatically between generations and the repeats tended to contract. The phenotype for these patients corresponded to the classical form of the disease, but in some cases without muscular dystrophy and possibly with a later onset than expected. Symptomatic patients bearing interrupted intermediate length repeat tracts were also identified, although the role of the interruptions in their phenotype remains unclear. The identification of interruptions in the DMPK repeat has important consequences for molecular genetic testing where they can lead to false negative conclusions. © 2009 Wiley-Liss, Inc.

131 citations


Cited by
More filters
Journal ArticleDOI
26 Mar 1993-Cell
TL;DR: In this article, the authors used haplotype analysis of linkage disequilibrium to spotlight a small segment of 4p16.3 as the likely location of the defect, which is expanded and unstable on HD chromosomes.

7,224 citations

Journal Article
25 Mar 1993-Cell
TL;DR: The Huntington's disease mutation involves an unstable DNA segment, similar to those described in fragile X syndrome, spino-bulbar muscular atrophy, and myotonic dystrophy, acting in the context of a novel 4p16.3 gene to produce a dominant phenotype.

6,992 citations

Journal ArticleDOI
TL;DR: A new algorithm for finding tandem repeats which works without the need to specify either the pattern or pattern size is presented and its ability to detect tandem repeats that have undergone extensive mutational change is demonstrated.
Abstract: A tandem repeat in DNA is two or more contiguous, approximate copies of a pattern of nucleotides. Tandem repeats have been shown to cause human disease, may play a variety of regulatory and evolutionary roles and are important laboratory and analytic tools. Extensive knowledge about pattern size, copy number, mutational history, etc. for tandem repeats has been limited by the inability to easily detect them in genomic sequence data. In this paper, we present a new algorithm for finding tandem repeats which works without the need to specify either the pattern or pattern size. We model tandem repeats by percent identity and frequency of indels between adjacent pattern copies and use statistically based recognition criteria. We demonstrate the algorithm’s speed and its ability to detect tandem repeats that have undergone extensive mutational change by analyzing four sequences: the human frataxin gene, the human β T cell receptor locus sequence and two yeast chromosomes. These sequences range in size from 3 kb up to 700 kb. A World Wide Web server interface at c3.biomath.mssm.edu/trf.html has been established for automated use of the program.

6,577 citations

Journal ArticleDOI
TL;DR: This study reports the first disease-causing mutations in RTT and points to abnormal epigenetic regulation as the mechanism underlying the pathogenesis of RTT.
Abstract: Rett syndrome (RTT, MIM 312750) is a progressive neurodevelopmental disorder and one of the most common causes of mental retardation in females, with an incidence of 1 in 10,000-15,000 (ref. 2). Patients with classic RTT appear to develop normally until 6-18 months of age, then gradually lose speech and purposeful hand use, and develop microcephaly, seizures, autism, ataxia, intermittent hyperventilation and stereotypic hand movements. After initial regression, the condition stabilizes and patients usually survive into adulthood. As RTT occurs almost exclusively in females, it has been proposed that RTT is caused by an X-linked dominant mutation with lethality in hemizygous males. Previous exclusion mapping studies using RTT families mapped the locus to Xq28 (refs 6,9,10,11). Using a systematic gene screening approach, we have identified mutations in the gene (MECP2 ) encoding X-linked methyl-CpG-binding protein 2 (MeCP2) as the cause of some cases of RTT. MeCP2 selectively binds CpG dinucleotides in the mammalian genome and mediates transcriptional repression through interaction with histone deacetylase and the corepressor SIN3A (refs 12,13). In 5 of 21 sporadic patients, we found 3 de novo missense mutations in the region encoding the highly conserved methyl-binding domain (MBD) as well as a de novo frameshift and a de novo nonsense mutation, both of which disrupt the transcription repression domain (TRD). In two affected half-sisters of a RTT family, we found segregation of an additional missense mutation not detected in their obligate carrier mother. This suggests that the mother is a germline mosaic for this mutation. Our study reports the first disease-causing mutations in RTT and points to abnormal epigenetic regulation as the mechanism underlying the pathogenesis of RTT.

4,503 citations

Journal ArticleDOI
TL;DR: Findings in other neurodegenerative diseases indicate that a broadly similar process of neuronal dysfunction is induced by diffusible oligomers of misfolded proteins.
Abstract: The distinct protein aggregates that are found in Alzheimer's, Parkinson's, Huntington's and prion diseases seem to cause these disorders. Small intermediates - soluble oligomers - in the aggregation process can confer synaptic dysfunction, whereas large, insoluble deposits might function as reservoirs of the bioactive oligomers. These emerging concepts are exemplified by Alzheimer's disease, in which amyloid beta-protein oligomers adversely affect synaptic structure and plasticity. Findings in other neurodegenerative diseases indicate that a broadly similar process of neuronal dysfunction is induced by diffusible oligomers of misfolded proteins.

4,499 citations