scispace - formally typeset
Search or ask a question
Author

Zdeněk Váňa

Bio: Zdeněk Váňa is an academic researcher from Czech Technical University in Prague. The author has contributed to research in topics: Model predictive control & Energy consumption. The author has an hindex of 9, co-authored 11 publications receiving 659 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of identification methods for buildings and analyze their applicability for subsequent predictive control, and propose a new methodology to obtain a model suitable for the use in a predictive control framework combining the building energy performance simulation tools and statistical identification.

306 citations

Journal ArticleDOI
TL;DR: In this article, the optimization of the Predicted Mean Vote (PMV) index which, opposed to the static temperature range, describes user comfort directly has been studied and compared with a conventional and predictive control strategies.

103 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an approach in which a model of a building is selected by an iterative two-stage procedure, where a minimum set of disturbance inputs is formed so that the resulting model is the best with respect to a defined quality criterion.

94 citations

Journal ArticleDOI
TL;DR: In this paper, an advanced identification approach is used for parameter estimation of a huge three-storey office building in Hasselt, Belgium and the chosen model is now used in real operation with MPC at Hollandsch Huys.

86 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the complete process of the MPC implementation for a real office building in Hasselt, Belgium, attaining to a flexible two-level control concept.

53 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive and significant research conducted on state-of-the-art intelligent control systems for energy and comfort management in smart energy buildings (SEB's).
Abstract: Buildings all around the world consume a significant amount of energy, which is more or less one-third of the total primary energy resources. This has raised concerns over energy supplies, rapid energy resource depletion, rising building service demands, improved comfort life styles along with the increased time spent in buildings; consequently, this has shown a rising energy demand in the near future. However, contemporary buildings’ energy efficiency has been fast tracked solution to cope/limit the rising energy demand of this sector. Building energy efficiency has turned out to be a multi-faceted problem, when provided with the limitation for the satisfaction of the indoor comfort index. However, the comfort level for occupants and their behavior have a significant effect on the energy consumption pattern. It is generally perceived that energy unaware activities can also add one-third to the building’s energy performance. Researchers and investigators have been working with this issue for over a decade; yet it remains a challenge. This review paper presents a comprehensive and significant research conducted on state-of-the-art intelligent control systems for energy and comfort management in smart energy buildings (SEB’s). It also aims at providing a building research community for better understanding and up-to-date knowledge for energy and comfort related trends and future directions. The main table summarizes 121 works closely related to the mentioned issue. Key areas focused on include comfort parameters, control systems, intelligent computational methods, simulation tools, occupants’ behavior and preferences, building types, supply source considerations and countries research interest in this sector. Trends for future developments and existing research in this area have been broadly studied and depicted in a graphical layout. In addition, prospective future advancements and gaps have also been discussed comprehensively.

689 citations

01 Jan 1992
TL;DR: Two novel algorithms to realize a finite dimensional, linear time-invariant state-space model from input-output data are presented: an RQ factorization followed by a singular value decomposition and the solution of an overdetermined set of equations.
Abstract: In this paper, we present two novel algorithms to realize a finite dimensional, linear time-invariant state-space model from input-output data. The algorithms have a number of common features. They are classified as one of the subspace model identification schemes, in that a major part of the identification problem consists of calculating specially structured subspaces of spaces defined by the input-output data. This structure is then exploited in the calculation of a realization. Another common feature is their algorithmic organization: an RQ factorization followed by a singular value decomposition and the solution of an overdetermined set (or sets) of equations. The schemes assume that the underlying system has an output-error structure and that a measurable input sequence is available. The latter characteristic indicates that both schemes are versions of the MIMO Output-Error State Space model identification (MOESP) approach. The first algorithm is denoted in particular as the (elementary MOESP scheme)...

660 citations

Journal ArticleDOI
Xiwang Li1, Jin Wen1
TL;DR: In this paper, an up-to-date overview of research on application of building energy modeling methods in optimal control for single building and multiple buildings is also summarized in this paper, and different model-based and model-free optimization methods for building energy system operation are reviewed and compared.
Abstract: Buildings consume about 41.1% of primary energy and 74% of the electricity in the U.S. Better or even optimal building energy control and operation strategies provide great opportunities to reduce building energy consumption. Moreover, it is estimated by the National Energy Technology Laboratory that more than one-fourth of the 713 GW of U.S. electricity demand in 2010 could be dispatchable if only buildings could respond to that dispatch through advanced building energy control and operation strategies and smart grid infrastructure. Energy forecasting models for building energy systems are essential to building energy control and operation. Three general categories of building energy forecasting models have been reported in the literature which include white-box (physics-based), black-box (data-driven), and gray-box (combination of physics based and data-driven) modeling approaches. This paper summarizes the existing efforts in this area as well as other critical areas related to building energy modeling, such as short-term weather forecasting. An up-to-date overview of research on application of building energy modeling methods in optimal control for single building and multiple buildings is also summarized in this paper. Different model-based and model-free optimization methods for building energy system operation are reviewed and compared in this paper. Agent based modeling, as a new modeling strategy, has made a remarkable progress in distributed energy systems control and optimization in the past years. The research literature on application of agent based model in building energy system control and operation is also identified and discussed in this paper.

470 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the potential of using occupancy information to realize a more energy efficient building climate control, focusing on Swiss office buildings equipped with Integrated Room Automation (IRA), i.e. the integrated control of Heating, Ventilation, Air Conditioning (HVAC) as well as lighting and blind positioning of a building zone or room.

338 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an up-to-date review on the basics of building energy estimation and propose a classification for energy estimation models based on the different classifications found in the literature review.
Abstract: Energy security, environmental concerns, thermal comfort, and economic matters are driving factors for the development of research on reducing energy consumption and the associated greenhouse gas emissions in every sector of the economy. Building energy consumption estimation has become a key approach to achieve the goals on energy consumption and emissions reduction. Energy performance of building is complicated since it depends on multiple variables associated to the building characteristics, equipment and systems, weather, occupants, and sociological influences. This paper aims to provide an up-to-date review on the basics of building energy estimation. Regarding models, a classification for energy estimation models is proposed based on the different classifications found in the literature review. The paper focuses on models developed with whole building energy simulation software and their validation. This focus is justified because of the importance that whole building energy tools have gained on areas such as green building design, and analysis of energy conservation strategies and retrofits. Since a suitable weather file is a major component for reliably simulations, the section about weather data provides pertinent information.

328 citations