scispace - formally typeset
Search or ask a question
Author

Ze Dong

Bio: Ze Dong is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: SPOP & Prostate cancer. The author has an hindex of 2, co-authored 3 publications receiving 10 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, mutually exclusive prostate cancer driver alterations involving the ERG transcription factor and the ubiquitin ligase adaptor SPOP are shown to be synthetic sick at the molecular level, the incompatible cancer pathways are driven by opposing functions in SPOP.
Abstract: Driver genes with a mutually exclusive mutation pattern across tumor genomes are thought to have overlapping roles in tumorigenesis. In contrast, we show here that mutually exclusive prostate cancer driver alterations involving the ERG transcription factor and the ubiquitin ligase adaptor SPOP are synthetic sick. At the molecular level, the incompatible cancer pathways are driven by opposing functions in SPOP. ERG upregulates wild type SPOP to dampen androgen receptor (AR) signaling and sustain ERG activity through degradation of the bromodomain histone reader ZMYND11. Conversely, SPOP-mutant tumors stabilize ZMYND11 to repress ERG-function and enable oncogenic androgen receptor signaling. This dichotomy regulates the response to therapeutic interventions in the AR pathway. While mutant SPOP renders tumor cells susceptible to androgen deprivation therapies, ERG promotes sensitivity to high-dose androgen therapy and pharmacological inhibition of wild type SPOP. More generally, these results define a distinct class of antagonistic cancer drivers and a blueprint toward their therapeutic exploitation.

24 citations

Posted ContentDOI
24 Oct 2020-bioRxiv
TL;DR: It is shown here that mutually-exclusive prostate cancer driver alterations involving the ERG transcription factor and the ubiquitin ligase adaptor SPOP are synthetic sick.
Abstract: Driver genes with a mutually exclusive mutation pattern across tumor genomes are thought to have overlapping roles in tumorigenesis. In contrast, we show here that mutually-exclusive prostate cancer driver alterations involving the ERG transcription factor and the ubiquitin ligase adaptor SPOP are synthetic sick. At the molecular level, the incompatible cancer pathways are driven by opposing functions in SPOP. ERG up-regulates wild type SPOP to dampen androgen receptor (AR) signaling and sustain ERG activity through degradation of the bromodomain histone reader ZMYND11. Conversely, SPOP-mutant tumors stabilize ZMYND11 to repress ERG-function and enable oncogenic androgen receptor signaling. This dichotomy regulates the response to therapeutic interventions in the AR pathway. While mutant SPOP renders tumor cells susceptible to androgen deprivation therapies, ERG promotes sensitivity to high-dose androgen therapy and pharmacological inhibition of wild type SPOP. More generally, these results define a distinct class of antagonistic cancer drivers and a blueprint toward their therapeutic exploitation.

16 citations

Posted ContentDOI
12 May 2021-bioRxiv
TL;DR: In this paper, a fluorescence-activated droplet sorting (FADS) pipeline was developed for high-throughput screening of PET-degrading microorganisms or enzymes (PETases).
Abstract: Enzymes that can decompose synthetic plastics such as polyethylene terephthalate (PET) are urgently needed. However, a bottleneck remains due to a lack of techniques for detecting and sorting environmental microorganisms with vast diversity and abundance. Here, we developed a fluorescence-activated droplet sorting (FADS) pipeline for high-throughput screening of PET-degrading microorganisms or enzymes (PETases). The pipeline comprises three steps: generation and incubation of droplets encapsulating single cells, picoinjection of fluorescein dibenzoate (FDBz) as the fluorogenic probe, and screening of droplets to obtain PET-degrading cells. We characterized critical factors associated with this method, including specificity and sensitivity for discriminating PETase from other enzymes. We then optimized its performance and compatibility with environmental samples. The system was used to screen a wastewater sample from a PET textile mill. We successfully obtained PET-degrading species from nine different genera. Moreover, two putative PETases from isolates Kineococcus endophyticus Un-5 and Staphylococcus epidermidis Un-C2-8 were genetically derived, heterologously expressed, and preliminarily validated for PET-degrading activities. We speculate that the FADS pipeline can be widely adopted to discover new PET-degrading microorganisms and enzymes in various environments and may be utilized in the directed evolution of PETases using synthetic biology.

Cited by
More filters
Journal ArticleDOI
08 Jan 2021-Oncogene
TL;DR: In this paper, the molecular mechanisms that enable cancer cells to switch from AR-positive to AR-negative disease and efforts to prevent/revert this process and thereby maintain/restore AR-dependence are reviewed.
Abstract: Targeting the androgen receptor (AR) signaling axis has been, over decades, the mainstay of prostate cancer therapy. More potent inhibitors of androgen synthesis and antiandrogens have emerged and have been successfully implemented in clinical practice. That said, the stronger inhibition of the AR signaling axis has led in recent years to an increase of prostate cancers that de-differentiate into AR-negative disease. Unfortunately, this process is intimately linked with a poor prognosis. Here, we review the molecular mechanisms that enable cancer cells to switch from an AR-positive to an AR-negative disease and efforts to prevent/revert this process and thereby maintain/restore AR-dependence.

39 citations

17 Sep 2015
TL;DR: It is demonstrated that DNA damage drugs, topoisomerase inhibitors, can trigger CKI activation to restore the SPOP/ΔERG interaction and its consequent degradation and that SPOP functions as a tumor suppressor to negatively regulate the stability of the ERG oncoprotein in prostate cancer.
Abstract: The ERG gene is fused to TMPRSS2 in approximately 50% of prostate cancers (PrCa), resulting in its overexpression However, whether this is the sole mechanism underlying ERG elevation in PrCa is currently unclear Here we report that ERG ubiquitination and degradation are governed by the Cullin 3-based ubiquitin ligase SPOP and that deficiency in this pathway leads to aberrant elevation of the ERG oncoprotein Specifically, we find that truncated ERG (ΔERG), encoded by the ERG fusion gene, is stabilized by evading SPOP-mediated destruction, whereas prostate cancer-associated SPOP mutants are also deficient in promoting ERG ubiquitination Furthermore, we show that the SPOP/ERG interaction is modulated by CKI-mediated phosphorylation Importantly, we demonstrate that DNA damage drugs, topoisomerase inhibitors, can trigger CKI activation to restore the SPOP/ΔERG interaction and its consequent degradation Therefore, SPOP functions as a tumor suppressor to negatively regulate the stability of the ERG oncoprotein in prostate cancer

28 citations

Journal ArticleDOI
TL;DR: In this article, the authors review examples of co-occurring and mutually exclusive driver gene mutation patterns across cancer genomes and discuss their underlying biology, identifying two distinct biological categories of incompatibilities among the mutually exclusive drivers depending on whether the mutated drivers trigger the same or divergent tumorigenic pathways.
Abstract: Cancer is the dysregulated proliferation of cells caused by acquired mutations in key driver genes. The most frequently mutated driver genes promote tumorigenesis in various organisms, cell types, and genetic backgrounds. However, recent cancer genomics studies also point to the existence of context-dependent driver gene functions, where specific mutations occur predominately or even exclusively in certain tumor types or genetic backgrounds. Here, we review examples of co-occurring and mutually exclusive driver gene mutation patterns across cancer genomes and discuss their underlying biology. While co-occurring driver genes typically activate collaborating oncogenic pathways, we identify two distinct biological categories of incompatibilities among the mutually exclusive driver genes depending on whether the mutated drivers trigger the same or divergent tumorigenic pathways. Finally, we discuss possible therapeutic avenues emerging from the study of incompatible driver gene mutations.

18 citations

Posted ContentDOI
TL;DR: A comprehensive prostate cancer transcriptome atlas is generated that describes the roadmap to tumor progression in an unprecedented qualitative and quantitative manner and determines at the single-cell level how inhibition of EZH2 - the top upregulated gene along the trajectory – reverts tumor progression and macrophage polarization.
Abstract: Comprehensive genomic studies have delineated key driver mutations linked to disease progression for most cancers. However, corresponding transcriptional changes remain largely elusive because of the bias associated with cross-study analysis. Here, we overcome these hurdles and generate a comprehensive prostate cancer transcriptome atlas that describes the roadmap to tumor progression in a qualitative and quantitative manner. Most cancers follow a uniform trajectory characterized by upregulation of polycomb-repressive-complex-2, G2-M checkpoints, and M2 macrophage polarization. Using patient-derived xenograft models, we functionally validate our observations and add single-cell resolution. Thereby, we show that tumor progression occurs through transcriptional adaption rather than a selection of pre-existing cancer cell clusters. Moreover, we determine at the single-cell level how inhibition of EZH2 - the top upregulated gene along the trajectory – reverts tumor progression and macrophage polarization. Finally, a user-friendly web-resource is provided enabling the investigation of dynamic transcriptional perturbations linked to disease progression. Transcriptional changes during prostate cancer progression are not yet fully understood. Here, the authors integrate a transcriptomics atlas of prostate cancer and validate it with preclinical models and single-cell RNA-seq, revealing the role of EZH2 and macrophage polarisation in tumour progression.

16 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explored the molecular and clinical progression of different genomic subtypes of prostate cancer using distinct tumor lineage models based on human genomic and transcriptomic data, and defined "early" and "late" categories of molecular subclasses from 8,158 PCa patients.
Abstract: BACKGROUNDMolecular characterization of prostate cancer (PCa) has revealed distinct subclasses based on underlying genomic alterations occurring early in the natural history of the disease. However, how these early alterations influence subsequent molecular events and the course of the disease over its long natural history remains unclear.METHODSWe explored the molecular and clinical progression of different genomic subtypes of PCa using distinct tumor lineage models based on human genomic and transcriptomic data. We developed transcriptional classifiers, and defined "early" and "late" categories of molecular subclasses from 8,158 PCa patients. Molecular subclasses were correlated with clinical outcomes and pathologic characteristics using Kaplan-Meier and logistic regression analyses.RESULTSWe identified PTEN and CHD1 alterations as subtype-specific late progression events specifically in ERG-overexpressing (ERG+) and SPOP-mutant tumors, respectively, and 2 distinct progression models consisting of ERG/PTEN (normal to ERG+ to PTEN-deleted) and SPOP/CHD1 (normal to SPOP-mutated to CHD1-deleted) with shared early tumorigenesis but distinct pathways toward progression. We found that within ERG+ and SPOP-mutant subtypes, late events were associated with worse prognosis. Importantly, the clinical and pathologic features associated with distinct late events at radical prostatectomy were strikingly different; PTEN deletions were associated with increased locoregional stage, while CHD1 deletions were only associated with increased grade, despite equivalent metastatic potential.CONCLUSIONThese findings suggest a paradigm in which specific subtypes of PCa follow distinct pathways of progression, at both the molecular and clinical levels. Therefore, the interpretation of common clinical parameters such as locoregional tumor stage may be influenced by the underlying tumor lineage, and potentially influence management decisions.FUNDINGProstate Cancer Foundation, National Cancer Institute, Urology Care Foundation, Damon Runyon Cancer Research Foundation, US Department of Defense, and the AIRC Foundation.

14 citations