scispace - formally typeset
Search or ask a question
Author

Zengjin Yuan

Other affiliations: Hunan Normal University
Bio: Zengjin Yuan is an academic researcher from East China Normal University. The author has contributed to research in topics: Metastasis & Breast cancer. The author has an hindex of 4, co-authored 5 publications receiving 121 citations. Previous affiliations of Zengjin Yuan include Hunan Normal University.

Papers
More filters
Journal ArticleDOI
TL;DR: Findings show that GPR 116 is crucial for the metastasis of breast cancer and support GPR116 as a potential prognostic marker and drug target against metastatic human breast cancer.
Abstract: Adhesion G-protein-coupled receptors (GPCR), which contain adhesion domains in their extracellular region, have been found to play important roles in cell adhesion, motility, embryonic development, and immune response. Because most adhesion molecules with adhesion domains have vital roles in cancer metastasis, we speculated that adhesion GPCRs are potentially involved in cancer metastasis. In this study, we identified GPR116 as a novel regulator of breast cancer metastasis through expression and functional screening of the adhesion GPCR family. We found that knockdown of GPR116 in highly metastatic (MDA-MB-231) breast cancer cells suppressed cell migration and invasion. Conversely, ectopic GPR116 expression in poorly metastatic (MCF-7 and Hs578T) cells promoted cell invasion. We further showed that knockdown of GPR116 inhibited breast cancer cell metastasis in two mammary tumor metastasis mouse models. Moreover, GPR116 modulated the formation of lamellipodia and actin stress fibers in cells in a RhoA- and Rac1-dependent manner. At a molecular level, GPR116 regulated cell motility and morphology through the Gαq-p63RhoGEF-RhoA/Rac1 pathway. The biologic significance of GPR116 in breast cancer is substantiated in human patient samples, where GPR116 expression is significantly correlated with breast tumor progression, recurrence, and poor prognosis. These findings show that GPR116 is crucial for the metastasis of breast cancer and support GPR116 as a potential prognostic marker and drug target against metastatic human breast cancer.

82 citations

Journal ArticleDOI
TL;DR: Findings support a crucial role of the Wnt signaling component LGR4 in breast cancer initiation, metastasis, and breast CSCs and suggest its role in regulation of epithelial–mesenchymal transition.
Abstract: The fourth member of the leucine-rich repeat-containing GPCR family (LGR4, frequently referred to as GPR48) and its cognate ligands, R-spondins (RSPOs) play crucial roles in the development of multiple organs as well as the survival of adult stem cells by activation of canonical Wnt signaling. Wnt/β-catenin signaling acts to regulate breast cancer; however, the molecular mechanisms determining its spatiotemporal regulation are largely unknown. In this study, we identified LGR4 as a master controller of Wnt/β-catenin signaling-mediated breast cancer tumorigenesis, metastasis, and cancer stem cell (CSC) maintenance. LGR4 expression in breast tumors correlated with poor prognosis. Either Lgr4 haploinsufficiency or mammary-specific deletion inhibited mouse mammary tumor virus (MMTV)- PyMT- and MMTV- Wnt1-driven mammary tumorigenesis and metastasis. Moreover, LGR4 down-regulation decreased in vitro migration and in vivo xenograft tumor growth and lung metastasis. Furthermore, Lgr4 deletion in MMTV- Wnt1 tumor cells or knockdown in human breast cancer cells decreased the number of functional CSCs by ∼90%. Canonical Wnt signaling was impaired in LGR4-deficient breast cancer cells, and LGR4 knockdown resulted in increased E-cadherin and decreased expression of N-cadherin and snail transcription factor -2 ( SNAI2) (also called SLUG), implicating LGR4 in regulation of epithelial-mesenchymal transition. Our findings support a crucial role of the Wnt signaling component LGR4 in breast cancer initiation, metastasis, and breast CSCs.-Yue, Z., Yuan, Z., Zeng, L., Wang, Y., Lai, L., Li, J., Sun, P., Xue, X., Qi, J., Yang, Z., Zheng, Y., Fang, Y., Li, D., Siwko, S., Li, Y., Luo, J., Liu, M. LGR4 modulates breast cancer initiation, metastasis, and cancer stem cells.

52 citations

Journal ArticleDOI
TL;DR: Cloned the full-length cDNA of human Isl-2 from a human embryo heart cDNA library and the predicted protein, containing two tandem LIM motifs in N-terminal and a homeodomain domain, is well conserved, especially in the LIM and DNA-binding domains.
Abstract: The LIM-homeodomain (LIM-HD) proteins have a homeodomain and two N-terminal LIM domains, which consist of a conserved cysteine- and histidine-rich structure of two tandem repeated zinc fingers. LIM domain is involved in protein–protein interactions during transcriptional regulation. LIM-HD proteins are classically suggested as major transcriptional regulators which, in cooperation with other transcription factors, play critical roles in several developing systems and organs, such as nervous system, pancreas, and heart. Here we have cloned the full-length cDNA of human Isl-2 from a human embryo heart cDNA library. The gene contains six exons and spans 5.7 kb in chromosome 15q23 region, and transcribes a 1.9 kb mRNA that encodes a protein with 359 amino acid residues. The predicted protein, containing two tandem LIM motifs in N-terminal and a homeodomain domain, is well conserved, especially in the LIM and DNA-binding domains. Northern blot analysis shows that human Isl-2 is expressed in every human tissue examined at adult stage and during embryonic developmental stages from 34 days to 24 weeks at different levels in tissues. The broad expression of Isl-2 gene in tissues during embryogenesis and adult development suggests that it may be involved in both differentiation and maintenance of these tissues and might play an important role.

8 citations

Journal ArticleDOI
29 Oct 2010-PLOS ONE
TL;DR: Simulations and real microarray results show that false positive rate of SWang is lower than currently popular methods (T- test, F-test, SAM, and Fold-change) with much higher statistical power and can uniquely detect significant genes in real micro arrays with imperceptible differential expression but higher variety in kurtosis and skewness.
Abstract: Many methods, including parametric, nonparametric, and Bayesian methods, have been used for detecting differentially expressed genes based on the assumption that biological systems are linear, which ignores the nonlinear characteristics of most biological systems. More importantly, those methods do not simultaneously consider means, variances, and high moments, resulting in relatively high false positive rate. To overcome the limitations, the SWang test is proposed to determine differentially expressed genes according to the equality of distributions between case and control. Our method not only latently incorporates functional relationships among genes to consider nonlinear biological system but also considers the mean, variance, skewness, and kurtosis of expression profiles simultaneously. To illustrate biological significance of high moments, we construct a nonlinear gene interaction model, demonstrating that skewness and kurtosis could contain useful information of function association among genes in microarrays. Simulations and real microarray results show that false positive rate of SWang is lower than currently popular methods (T-test, F-test, SAM, and Fold-change) with much higher statistical power. Additionally, SWang can uniquely detect significant genes in real microarray data with imperceptible differential expression but higher variety in kurtosis and skewness. Those identified genes were confirmed with previous published literature or RT-PCR experiments performed in our lab.

5 citations

Journal ArticleDOI
TL;DR: SSCP analysis of the segregation pattern of the mutation strongly suggests a causal relationship to the SHFM phenotype in p63, and this mutation has not been observed in other countries in the world.
Abstract: p63 is a transcription factor homologous to p53 and p73; mutations in this gene have been identified in individuals with several types of developmental abnormalities, including EEC (ectrodactyly, ectodermal dysplasia, facial clefts) syndrome and split-hand/split-foot malformation (SHFM) Several mutations in the p63 gene have previously been shown to be related to SHFM In this study, we report on a Chinese family with intrafamilial clinical variability of SHFM that have a novel heterozygous mutation in all four affected individuals The mutation is in exon 8 of p63, 1046G --> A, which predicts an amino acid substitution G310E SSCP analysis of the segregation pattern of the mutation strongly suggests a causal relationship to the SHFM phenotype in p63 This mutation has not been observed in other countries in the world

3 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review covers all major biologic aspects of Adhesion GPCRs, including evolutionary origins, interaction partners, signaling, expression, physiologic functions, and therapeutic potential.
Abstract: The Adhesion family forms a large branch of the pharmacologically important superfamily of G protein–coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification, proposes a unified nomenclature for Adhesion GPCRs. The new names have ADGR as common dominator followed by a letter and a number to denote each subfamily and subtype, respectively. The new names, with old and alternative names within parentheses, are: ADGRA1 (GPR123), ADGRA2 (GPR124), ADGRA3 (GPR125), ADGRB1 (BAI1), ADGRB2 (BAI2), ADGRB3 (BAI3), ADGRC1 (CELSR1), ADGRC2 (CELSR2), ADGRC3 (CELSR3), ADGRD1 (GPR133), ADGRD2 (GPR144), ADGRE1 (EMR1, F4/80), ADGRE2 (EMR2), ADGRE3 (EMR3), ADGRE4 (EMR4), ADGRE5 (CD97), ADGRF1 (GPR110), ADGRF2 (GPR111), ADGRF3 (GPR113), ADGRF4 (GPR115), ADGRF5 (GPR116, Ig-Hepta), ADGRG1 (GPR56), ADGRG2 (GPR64, HE6), ADGRG3 (GPR97), ADGRG4 (GPR112), ADGRG5 (GPR114), ADGRG6 (GPR126), ADGRG7 (GPR128), ADGRL1 (latrophilin-1, CIRL-1, CL1), ADGRL2 (latrophilin-2, CIRL-2, CL2), ADGRL3 (latrophilin-3, CIRL-3, CL3), ADGRL4 (ELTD1, ETL), and ADGRV1 (VLGR1, GPR98). This review covers all major biologic aspects of Adhesion GPCRs, including evolutionary origins, interaction partners, signaling, expression, physiologic functions, and therapeutic potential.

343 citations

Journal ArticleDOI
TL;DR: It is reported that leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4, also called GPR48) is another receptor for RANKL that negatively regulates osteoclast differentiation and bone resorption.
Abstract: Tumor necrosis factor (TNF) superfamily member 11 (TNFSF11, also known as RANKL) regulates multiple physiological or pathological functions, including osteoclast differentiation and osteoporosis. TNFRSF11A (also called RANK) is considered to be the sole receptor for RANKL. Herein we report that leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4, also called GPR48) is another receptor for RANKL. LGR4 competes with RANK to bind RANKL and suppresses canonical RANK signaling during osteoclast differentiation. RANKL binding to LGR4 activates the Gαq and GSK3-β signaling pathway, an action that suppresses the expression and activity of nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1 (NFATC1) during osteoclastogenesis. Both whole-body (Lgr4(-/-)) and monocyte conditional knockout mice of Lgr4 (Lgr4 CKO) exhibit osteoclast hyperactivation (including elevation of osteoclast number, surface area, and size) and increased bone erosion. The soluble LGR4 extracellular domain (ECD) binds RANKL and inhibits osteoclast differentiation in vivo. Moreover, LGR4-ECD therapeutically abrogated RANKL-induced bone loss in three mouse models of osteoporosis. Therefore, LGR4 acts as a second RANKL receptor that negatively regulates osteoclast differentiation and bone resorption.

269 citations

Journal ArticleDOI
TL;DR: Understanding GPCR involvement in cancer malignancy may help identify novel therapeutic opportunities for cancer prevention and treatment.

222 citations

Journal ArticleDOI
TL;DR: Using fibroblasts from patients with familial dysautonomia, the technique was able to reveal previously unknown aspects of human disease phenotypes in vitro, modeling the inherent mechanisms underlying inflammatory pain hypersensitivity and painful chemotherapy-induced neuropathy.
Abstract: Reprogramming somatic cells from one cell fate to another can generate specific neurons suitable for disease modeling. To maximize the utility of patient-derived neurons, they must model not only disease-relevant cell classes, but also the diversity of neuronal subtypes found in vivo and the pathophysiological changes that underlie specific clinical diseases. We identified five transcription factors that reprogram mouse and human fibroblasts into noxious stimulus-detecting (nociceptor) neurons. These recapitulated the expression of quintessential nociceptor-specific functional receptors and channels found in adult mouse nociceptor neurons, as well as native subtype diversity. Moreover, the derived nociceptor neurons exhibited TrpV1 sensitization to the inflammatory mediator prostaglandin E2 and the chemotherapeutic drug oxaliplatin, modeling the inherent mechanisms underlying inflammatory pain hypersensitivity and painful chemotherapy-induced neuropathy. Using fibroblasts from patients with familial dysautonomia (hereditary sensory and autonomic neuropathy type III), we found that the technique was able to reveal previously unknown aspects of human disease phenotypes in vitro.

188 citations

Journal ArticleDOI
TL;DR: This pathway should be a main target in cancer therapy as WNT signaling activation is essential for tumor progression and survival, even in the presence of the anti-tumoral immune response and/or antineoplastic drugs.
Abstract: WNT/β-catenin signaling is involved in many physiological processes. Its implication in embryonic development, cell migration, and polarization has been shown. Nevertheless, alterations in this signaling have also been related with pathological events such as sustaining and proliferating the cancer stem cell (CSC) subset present in the tumor bulk. Related with this, WNT signaling has been associated with the maintenance, expansion, and epithelial-mesenchymal transition of stem cells, and furthermore with two distinctive features of this tumor population: therapeutic resistance (MDR, multidrug resistance) and immune escape. These mechanisms are developed and maintained by WNT activation through the transcriptional control of the genes involved in such processes. This review focuses on the description of the best known WNT pathways and the molecules involved in them. Special attention is given to the WNT cascade proteins deregulated in tumors, which have a decisive role in tumor survival. Some of these proteins function as extrusion pumps that, in the course of chemotherapy, expel the drugs from the cells; others help the tumoral cells hide from the immune effector mechanisms. Among the WNT targets involved in drug resistance, the drug extrusion pump MDR-1 (P-GP, ABCB1) and the cell adhesion molecules from the CD44 family are highlighted. The chemokine CCL4 and the immune checkpoint proteins CD47 and PD-L1 are included in the list of WNT target molecules with a role in immunity escape. This pathway should be a main target in cancer therapy as WNT signaling activation is essential for tumor progression and survival, even in the presence of the anti-tumoral immune response and/or antineoplastic drugs. The appropriate design and combination of anti-tumoral strategies, based on the modulation of WNT mediators and/or protein targets, could negatively affect the growth of tumoral cells, improving the efficacy of these types of therapies.

136 citations