scispace - formally typeset
Search or ask a question
Author

Zengxin Zhang

Bio: Zengxin Zhang is an academic researcher. The author has contributed to research in topics: Species distribution & Cunninghamia. The author has an hindex of 1, co-authored 1 publications receiving 1 citations.

Papers
More filters
Journal ArticleDOI
07 Jun 2021-Forests
TL;DR: In this article, the appropriate distribution area of C. lanceolata (Lamb.) Hook was analyzed using the MaxEnt model based on CMIP6 data, spanning 2041-2060.
Abstract: Cunninghamia lanceolata (Lamb.) Hook. (Chinese fir) is one of the main timber species in Southern China, which has a wide planting range that accounts for 25% of the overall afforested area. Moreover, it plays a critical role in soil and water conservation; however, its suitability is subject to climate change. For this study, the appropriate distribution area of C. lanceolata was analyzed using the MaxEnt model based on CMIP6 data, spanning 2041–2060. The results revealed that (1) the minimum temperature of the coldest month (bio6), and the mean diurnal range (bio2) were the most important environmental variables that affected the distribution of C. lanceolata; (2) the currently suitable areas of C. lanceolata were primarily distributed along the southern coastal areas of China, of which 55% were moderately so, while only 18% were highly suitable; (3) the projected suitable area of C. lanceolata would likely expand based on the BCC-CSM2-MR, CanESM5, and MRI-ESM2-0 under different SSPs spanning 2041–2060. The increased area estimated for the future ranged from 0.18 to 0.29 million km2, where the total suitable area of C. lanceolata attained a maximum value of 2.50 million km2 under the SSP3-7.0 scenario, with a lowest value of 2.39 million km2 under the SSP5-8.5 scenario; (4) in combination with land use and farmland protection policies of China, it is estimated that more than 60% of suitable land area could be utilized for C. lanceolata planting from 2041–2060 under different SSP scenarios. Although climate change is having an increasing influence on species distribution, the deleterious impacts of anthropogenic activities cannot be ignored. In the future, further attention should be paid to the investigation of species distribution under the combined impacts of climate change and human activities.

23 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper , the authors established the existing distributions of both species, measured the consequences of prospective environmental conditions on their distributions, predict possible habitat distributions, map the overlapped habitat ranges for the species in the Kurdistan Region of Iraq's mountain ranges, and identify the key factors influencing their distributions.

9 citations

Journal ArticleDOI
04 Jan 2022-Forests
TL;DR: In this paper , a maximum entropy model was used to predict suitable areas for the northernmost mangroves in China in the 2050s, and an approach was proposed to improve the resolution and credibility of suitability predictions by incorporating land-use potential.
Abstract: Mangroves are important wetland ecosystems on tropical and subtropical coasts. There is an urgent need to better understand how the spatial distribution of mangroves varies with climate change factors. Species distribution models can be used to reveal the spatial change of mangroves; however, global models typically have a horizontal resolution of hundreds of kilometers and more than 1 km, even after downscaling. In the present study, a maximum entropy model was used to predict suitable areas for the northernmost mangroves in China in the 2050s. An approach was proposed to improve the resolution and credibility of suitability predictions by incorporating land-use potential. Predictions were made based on two CMIP6 scenarios (i.e., SSP1-2.6 and SSP5-8.5). The results show that the northern edge of the natural mangrove distribution in China would migrate from 27.20° N to 27.39° N–28.15° N, and the total extent of suitable mangrove habitats would expand. By integrating 30 m resolution land-use data to refine the model’s predictions, under the SSP1-2.6 scenario, the suitable habitats of mangroves are predicted to be 13,435 ha, which would increase by 33.9% compared with the current scenario. Under the SSP5-8.5 scenario, the suitable area would be 23,120 ha, with an increased rate of 96.5%. Approximately 40–44% of the simulated mangrove patches would be adjacent to aquacultural ponds, cultivated, and artificial land, which may restrict mangrove expansion. Collectively, our results showed how climate change and land use could influence mangrove distributions, providing a scientific basis for adaptive mangrove habitat management despite climate change.

8 citations

Journal ArticleDOI
14 Jan 2022-Forests
TL;DR: In this article , a stable hydrogen isotope was employed to assess the contribution of rainfall to soil water (CRSW) in a pure Chinese fir (Cunninghamia lanceolata) plantation and in two mixtures of Chinese fir with Cinnamomum camphora or with Alnus cremastogyne after three different magnitudes of rainfall events in subtropical China.
Abstract: The climate-induced changes in soil water patterns pose a serious threat to subtropical plantations. Mixed species stands have been advocated as an efficient way to enhance ecosystem stability. However, little is known about their possible impact on the soil water-holding capacity in the subtropics. In this study, we employed a stable hydrogen isotope to assess the contribution of rainfall to soil water (CRSW) in a pure Chinese fir (Cunninghamia lanceolata) plantation and in two mixtures of Chinese fir with Cinnamomum camphora or with Alnus cremastogyne after three different magnitudes of rainfall events in subtropical China. Furthermore, we used structure equation modeling (SEM) to quantify the relative importance of vegetation and soil properties on the CRSW. The results indicated that the CRSW did not differ among these three Chinese fir plantations after light rainfall, whereas the CRSW of moderate and heavy rainfall to soil water were 15.95% and 26.06% higher in Chinese fir plantation with Cinnamomum camphora, and 22.67% and 22.93% higher in Chinese fir plantation with Alnus cremastogyne than that in the pure Chinese fir plantation, respectively. SEM analysis showed that the vegetation biomass and soil properties significantly affected the CRSW following light rainfall, but the soil properties were the most important factors influencing the CRSW under moderate and heavy rainfall. Our findings demonstrate that the mixed conifer–broad-leaved plantation is a more effective strategy for improving the soil water-holding capacity than the pure conifer plantation in subtropical regions, which is conducive to coping with the frequent seasonal droughts and extreme precipitation events.

7 citations

Journal ArticleDOI
TL;DR: Based on the CMIP6 shared socioeconomic pathways (SSPs) scenarios, changes in the vegetation aboveground biomass carbon (ABC) were estimated using the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ) model for China as mentioned in this paper .

6 citations

Journal ArticleDOI
TL;DR: In this article , the authors used the results of the Coupled Intercomparison Project (CMIP6) to identify error sources and potential issues that deserve further attention in models.
Abstract: Climate classifications are useful to synthesize the physical state of the climate with a proxy that can be directly related to biota. However, they present a potential drawback, namely a strong sensitivity because of the use of hard thresholds (step functions). Thus, minor discrepancies in the base data produce large differences in the type of climate. However, such an a priori limitation is also a strength because such sensitivity can be used to better gauge model performance. Although previous attempts of classifying climates of the world using global climate model outputs were encouraging, the applicability of their classifications to impact studies has been limited by past model issues. Notwithstanding the persistence of certain imperfections and limitations in current models, the high‐quality physical simulations from phase six of the Coupled Intercomparison Project (CMIP6) has opened new possibilities in the field, thanks to their improved representation of atmospheric and oceanic physics. The purpose of this paper is twofold: to show that climate classifications from CMIP6 are sufficiently robust for use in impact studies, and to use those classifications for identifying error sources and potential issues that deserve further attention in models. Thus, 52 CMIP6 climate models were evaluated by using three climate classifications schemes, classical Köppen, extended‐Köppen, and modified Thornthwaite. We first assessed model ability to reproduce present climate types by comparing their outputs with observational data. Models performed best for the Köppen and extended‐Köppen classification methods (Cohen's kappa κ = 0.7), and had moderate scores for the Thornthwaite climate classification (κ = 0.4). By tracing back the observed biases, we were able to pinpoint the misrepresentation of dry climates as a major source of error. Another finding was that most models still had some difficulties in representing the seasonal variability of precipitation over several monsoonal regions, thereby yielding the wrong climate type there. Models were also evaluated for future climate. Substantial changes in climate types are projected in the SSP5‐8.5 scenario. These changes include a shrinkage of polar/frigid climates (22%) and an increase of dry climates (7%).

5 citations