scispace - formally typeset
Search or ask a question
Author

Zewen Xiao

Bio: Zewen Xiao is an academic researcher from Huazhong University of Science and Technology. The author has contributed to research in topics: Perovskite (structure) & Materials science. The author has an hindex of 33, co-authored 80 publications receiving 4375 citations. Previous affiliations of Zewen Xiao include Xi'an Jiaotong University & Tokyo Institute of Technology.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: Reviews on the theoretical understanding of the electronic, optical, and defect properties of Pb and Pb-free halide perovskites andperovskite derivatives are provided, as well as the experimental results available in the literature.
Abstract: Despite the exciting progress on power conversion efficiencies, the commercialization of the emerging lead (Pb) halide perovskite solar cell technology still faces significant challenges, one of which is the inclusion of toxic Pb. Searching for Pb-free perovskite solar cell absorbers is currently an attractive research direction. The approaches used for and the consequences of Pb replacement are reviewed herein. Reviews on the theoretical understanding of the electronic, optical, and defect properties of Pb and Pb-free halide perovskites and perovskite derivatives are provided, as well as the experimental results available in the literature. The theoretical understanding explains well why Pb halide perovskites exhibit superior photovoltaic properties, but Pb-free perovskites and perovskite derivatives do not.

503 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that perovskite-based solar cells should have a high electronic dimensionality, because of barriers to isotropic current flow, enhanced electron/hole effective masses and fundamentally deeper defect states.
Abstract: Searching for promising nontoxic and air-stable perovskite absorbers for solar cell applications has drawn extensive attention. Here, we show that a promising perovskite absorber should exhibit a high electronic dimensionality. Semiconductors that exhibit a high structural dimensionality, but a low electronic dimensionality have less promise as an absorber, because of barriers to isotropic current flow, enhanced electron/hole effective masses and fundamentally deeper defect states (more effective at causing recombination). Our concept accounts for the device performance of the perovskite-based solar cells reported in literature so far.

481 citations

Journal ArticleDOI
TL;DR: Lead thiocyanate in the perovskite precursor can increase the grain size of a perovSkite thin film and reduce the conductivity of the grain boundaries, leading to perovkite solar cells with reduced hysteresis and enhanced fill factor.
Abstract: Lead thiocyanate in the perovskite precursor can increase the grain size of a perovskite thin film and reduce the conductivity of the grain boundaries, leading to perovskite solar cells with reduced hysteresis and enhanced fill factor. A planar perovskite solar cell with grain boundary and interface passivation achieves a steady-state efficiency of 18.42%.

419 citations

Journal ArticleDOI
TL;DR: It is shown that if B2+ is not Sn or Ge, Pb-free metal halide perovskites exhibit poor optical absorptions because of their indirect band gap nature, making them not ideal for thin-film solar cell applications.
Abstract: Using density functional theory calculations, we analyze the optical absorption properties of lead (Pb)-free metal halide perovskites (AB2+X3) and double perovskites (A2B+B3+X6) (A = Cs or monovalent organic ion, B2+ = non-Pb divalent metal, B+ = monovalent metal, B3+ = trivalent metal, X = halogen). We show that if B2+ is not Sn or Ge, Pb-free metal halide perovskites exhibit poor optical absorptions because of their indirect band gap nature. Among the nine possible types of Pb-free metal halide double perovskites, six have direct band gaps. Of these six types, four show inversion symmetry-induced parity-forbidden or weak transitions between band edges, making them not ideal for thin-film solar cell applications. Only one type of Pb-free double perovskite shows optical absorption and electronic properties suitable for solar cell applications, namely, those with B+ = In, Tl and B3+ = Sb, Bi. Our results provide important insights for designing new metal halide perovskites and double perovskites for optoel...

382 citations

Journal ArticleDOI
TL;DR: In this paper, a two-step deposition approach was proposed to obtain continuous and well-structured thin films of Cs2SnI6, which is a one-half Sn-deficient 0-D perovskite derivative (i.e., the compound can also be written as CsSn0.5I3, with a structure consisting of isolated SnI64- octahedra).
Abstract: In this work, we describe details of a two-step deposition approach that enables the preparation of continuous and well-structured thin films of Cs2SnI6, which is a one-half Sn-deficient 0-D perovskite derivative (i.e., the compound can also be written as CsSn0.5I3, with a structure consisting of isolated SnI64– octahedra). The films were characterized using powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), UV–vis spectroscopy, photoluminescence (PL), photoelectron spectroscopy (UPS, IPES, XPS), and Hall effect measurements. UV–vis and PL measurements indicate that the obtained Cs2SnI6 film is a semiconductor with a band gap of 1.6 eV. This band gap was further confirmed by the UPS and IPES spectra, which were well reproduced by the calculated density of states with the HSE hybrid functional. The Cs2SnI6 films exhibited n-type conduction with a carrier density of 6(1) × 1016 cm–3 and mobility of 2.9(3) cm2/V·s. While the computationally derived band str...

308 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review will explore beyond the current focus on three-dimensional (3-D) lead(II) halide perovskites, to highlight the great chemical flexibility and outstanding potential of the broader class of 3-D and lower dimensional organic-based perovSKite family for electronic, optical, and energy-based applications as well as fundamental research.
Abstract: Although known since the late 19th century, organic–inorganic perovskites have recently received extraordinary research community attention because of their unique physical properties, which make them promising candidates for application in photovoltaic (PV) and related optoelectronic devices. This review will explore beyond the current focus on three-dimensional (3-D) lead(II) halide perovskites, to highlight the great chemical flexibility and outstanding potential of the broader class of 3-D and lower dimensional organic-based perovskite family for electronic, optical, and energy-based applications as well as fundamental research. The concept of a multifunctional organic–inorganic hybrid, in which the organic and inorganic structural components provide intentional, unique, and hopefully synergistic features to the compound, represents an important contemporary target.

1,962 citations

Journal ArticleDOI
TL;DR: VASPKIT as mentioned in this paper is a command-line program that aims at providing a robust and user-friendly interface to perform high-throughput analysis of a variety of material properties from the raw data produced by the VASP code.

1,357 citations

Journal ArticleDOI
07 Nov 2018-Nature
TL;DR: After alloying with metal cations, a lead-free halide double perovskite shows stable performance and remarkably efficient white-light emission, with possible applications in lighting and display technologies.
Abstract: Lighting accounts for one-fifth of global electricity consumption1. Single materials with efficient and stable white-light emission are ideal for lighting applications, but photon emission covering the entire visible spectrum is difficult to achieve using a single material. Metal halide perovskites have outstanding emission properties2,3; however, the best-performing materials of this type contain lead and have unsatisfactory stability. Here we report a lead-free double perovskite that exhibits efficient and stable white-light emission via self-trapped excitons that originate from the Jahn–Teller distortion of the AgCl6 octahedron in the excited state. By alloying sodium cations into Cs2AgInCl6, we break the dark transition (the inversion-symmetry-induced parity-forbidden transition) by manipulating the parity of the wavefunction of the self-trapped exciton and reduce the electronic dimensionality of the semiconductor4. This leads to an increase in photoluminescence efficiency by three orders of magnitude compared to pure Cs2AgInCl6. The optimally alloyed Cs2(Ag0.60Na0.40)InCl6 with 0.04 per cent bismuth doping emits warm-white light with 86 ± 5 per cent quantum efficiency and works for over 1,000 hours. We anticipate that these results will stimulate research on single-emitter-based white-light-emitting phosphors and diodes for next-generation lighting and display technologies. After alloying with metal cations, a lead-free halide double perovskite shows stable performance and remarkably efficient white-light emission, with possible applications in lighting and display technologies.

1,202 citations

Journal ArticleDOI
18 Sep 2019-Joule
TL;DR: In this article, the function of methylammonium chloride (MACl) additive in formamidinium lead iodide (FAPbI3)-based perovskite was studied.

1,064 citations

Journal ArticleDOI
TL;DR: The recent advances in passivation of imperfections and suppressing ion migration to achieve improved efficiency and highly stable perovskite solar cells are reviewed.
Abstract: All highly-efficient organic–inorganic halide perovskite (OIHP) solar cells to date are made of polycrystalline perovskite films which contain a high density of defects, including point and extended imperfections. The imperfections in OIHP materials play an important role in the process of charge recombination and ion migration in perovskite solar cells (PSC), which heavily influences the resulting device energy conversion efficiency and stability. Here we review the recent advances in passivation of imperfections and suppressing ion migration to achieve improved efficiency and highly stable perovskite solar cells. Due to the ionic nature of OIHP materials, the defects in the photoactive films are inevitably electrically charged. The deep level traps induced by particular charged defects in OIHP films are major non-radiative recombination centers; passivation by coordinate bonding, ionic bonding, or chemical conversion have proven effective in mitigating the negative impacts of these deep traps. Shallow level charge traps themselves may contribute little to non-radiative recombination, but the migration of charged shallow level traps in OIHP films results in unfavorable band bending, interfacial reactions, and phase segregation, influencing the carrier extraction efficiency. Finally, the impact of defects and ion migration on the stability of perovskite solar cells is described.

1,040 citations