scispace - formally typeset
Search or ask a question
Author

Zexiang Li

Bio: Zexiang Li is an academic researcher from Hong Kong University of Science and Technology. The author has contributed to research in topics: Parallel manipulator & Motion control. The author has an hindex of 42, co-authored 251 publications receiving 9664 citations. Previous affiliations of Zexiang Li include University of California, Irvine & George Washington University.


Papers
More filters
Journal ArticleDOI
01 Mar 1987
TL;DR: Three quality measures for evaluating a grasp are proposed and one is task-oriented and needs the development of a procedure for modeling tasks as ellipsoids in the wrench space of the object.
Abstract: The problem of optimal grasping of an object by a multifingered robot hand is discussed. Using screw theory and elementary differential geometry, the concept of a grasp is axiomated and its stability characterized. Three quality measures for evaluating a grasp are then proposed. The last quality measure is task-oriented and needs the development of a procedure for modeling tasks as ellipsoids in the wrench space of the object. Numerical computations of these quality measures and the selection of an optimal grasp are addressed in detail. Several examples are given using these quality measures to show that they are consistent with measurements yielded by the authors' experiments on grasping. >

443 citations

Journal ArticleDOI
01 Feb 1990
TL;DR: An algorithm is proposed that generates a desired path with one of the objects being flat between two contact configurations, using a generalized version of Frobenius's theorem for determining the existence of motion.
Abstract: The motion of two rigid bodies under rolling constraint is considered. In particular, the following two problems are addressed: (1) given the geometry of the rigid bodies, determine the existence of an admissible path between two contact configurations; and (2) assuming that an admissible path exists, find such a path. First, the configuration space of contact is defined, and the differential equations governing the rolling constraint are derived. Then, a generalized version of Frobenius's theorem, known as Chow's theorem, for determining the existence of motion is applied. Finally, an algorithm is proposed that generates a desired path with one of the objects being flat. Potential applications of this study include adjusting grasp configurations of a multifingered robot hand without slipping, contour following without dissipation or wear by the end-effector of a manipulator, and wheeled mobile robotics. >

367 citations

Book ChapterDOI
01 Oct 1992
TL;DR: In this article, nonholonomic kinematics and the role of elliptic functions in constructive controllability, R.W. Murray and S.J. Sussmann planning smooth paths for mobile robots, P. Jacobs and J.P. Laumond motion planning for non-holonomic dynamic systems, M. Reyhanoglu et al a differential geometric approach to motion planning, G.G. Lafferriere and H.
Abstract: Nonholonomic kinematics and the role of elliptic functions in constructive controllability, R.W. Brockett and L. Dai steering nonholonomic control systems using sinusoids, R.M. Murray and S. Shakar Sastry smooth time-periodic feedback solutions for nonholonomic motion planning, L. Gurvits and Zexiang Li lie bracket extensions and averaging - the single-bracket case, H.J. Sussmann and Wensheng Liu singularities and topological aspects in nonholonomic motion planning, J.-P. Laumond motion planning for nonholonomic dynamic systems, M. Reyhanoglu et al a differential geometric approach to motion planning, G. Lafferriere and H.J. Sussmann planning smooth paths for mobile robots, P. Jacobs and J. Canny nonholonomic control and gauge theory, R. Montgomery optimal nonholonomic motion planning for a falling cat, C. Fernandes et al nonholonomic behaviour in free-floating space manipulators and its utilization, E.G. Papadopoulos.

364 citations

Journal ArticleDOI
TL;DR: This paper develops the dual notions of grasp stability and grasp manipulability and proposes a procedure for task modeling and develops a computed torque-like con trol algorithm for the coordinated manipulation of a multi fingered robot hand.
Abstract: A new avenue of progress in the area of robotics is the use of multifingered robot hands for fine motion manipulation. This paper treats two fundamental problems in the study of multi fingered robot hands: grasp planning and the determination of coordinated control laws with point contact models. First, we develop the dual notions of grasp stability and grasp manipulability and propose a procedure for task modeling. Using the task model, we define the structured grasp quality measures, and using these measures we then devise a grasp planning algorithm. Second, based on the assumption of point contact models, we develop a computed torque-like con trol algorithm for the coordinated manipulation of a multi fingered robot hand. This control algorithm, which takes into account both the dynamics of the object and the dynamics of the hand, will realize simultaneously both the position trajec tory of the object and any desired value of internal grasp force. Moreover, the formulation of the control scheme can be e...

360 citations


Cited by
More filters
Book
22 Mar 1994
TL;DR: In this paper, the authors present a detailed overview of the history of multifingered hands and dextrous manipulation, and present a mathematical model for steerable and non-driveable hands.
Abstract: INTRODUCTION: Brief History. Multifingered Hands and Dextrous Manipulation. Outline of the Book. Bibliography. RIGID BODY MOTION: Rigid Body Transformations. Rotational Motion in R3. Rigid Motion in R3. Velocity of a Rigid Body. Wrenches and Reciprocal Screws. MANIPULATOR KINEMATICS: Introduction. Forward Kinematics. Inverse Kinematics. The Manipulator Jacobian. Redundant and Parallel Manipulators. ROBOT DYNAMICS AND CONTROL: Introduction. Lagrange's Equations. Dynamics of Open-Chain Manipulators. Lyapunov Stability Theory. Position Control and Trajectory Tracking. Control of Constrained Manipulators. MULTIFINGERED HAND KINEMATICS: Introduction to Grasping. Grasp Statics. Force-Closure. Grasp Planning. Grasp Constraints. Rolling Contact Kinematics. HAND DYNAMICS AND CONTROL: Lagrange's Equations with Constraints. Robot Hand Dynamics. Redundant and Nonmanipulable Robot Systems. Kinematics and Statics of Tendon Actuation. Control of Robot Hands. NONHOLONOMIC BEHAVIOR IN ROBOTIC SYSTEMS: Introduction. Controllability and Frobenius' Theorem. Examples of Nonholonomic Systems. Structure of Nonholonomic Systems. NONHOLONOMIC MOTION PLANNING: Introduction. Steering Model Control Systems Using Sinusoids. General Methods for Steering. Dynamic Finger Repositioning. FUTURE PROSPECTS: Robots in Hazardous Environments. Medical Applications for Multifingered Hands. Robots on a Small Scale: Microrobotics. APPENDICES: Lie Groups and Robot Kinematics. A Mathematica Package for Screw Calculus. Bibliography. Index Each chapter also includes a Summary, Bibliography, and Exercises

6,592 citations

MonographDOI
01 Jan 2006
TL;DR: This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms, into planning under differential constraints that arise when automating the motions of virtually any mechanical system.
Abstract: Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms. The treatment is centered on robot motion planning but integrates material on planning in discrete spaces. A major part of the book is devoted to planning under uncertainty, including decision theory, Markov decision processes, and information spaces, which are the “configuration spaces” of all sensor-based planning problems. The last part of the book delves into planning under differential constraints that arise when automating the motions of virtually any mechanical system. Developed from courses taught by the author, the book is intended for students, engineers, and researchers in robotics, artificial intelligence, and control theory as well as computer graphics, algorithms, and computational biology.

6,340 citations

Book
20 May 2005
TL;DR: In this paper, the mathematical underpinnings of robot motion are discussed and a text that makes the low-level details of implementation to high-level algorithmic concepts is presented.
Abstract: A text that makes the mathematical underpinnings of robot motion accessible and relates low-level details of implementation to high-level algorithmic concepts. Robot motion planning has become a major focus of robotics. Research findings can be applied not only to robotics but to planning routes on circuit boards, directing digital actors in computer graphics, robot-assisted surgery and medicine, and in novel areas such as drug design and protein folding. This text reflects the great advances that have taken place in the last ten years, including sensor-based planning, probabalistic planning, localization and mapping, and motion planning for dynamic and nonholonomic systems. Its presentation makes the mathematical underpinnings of robot motion accessible to students of computer science and engineering, rleating low-level implementation details to high-level algorithmic concepts.

1,811 citations

Journal ArticleDOI
TL;DR: Methods for steering systems with nonholonomic c.onstraints between arbitrary configurations are investigated and suboptimal trajectories are derived for systems that are not in canonical form.
Abstract: Methods for steering systems with nonholonomic c.onstraints between arbitrary configurations are investigated. Suboptimal trajectories are derived for systems that are not in canonical form. Systems in which it takes more than one level of bracketing to achieve controllability are considered. The trajectories use sinusoids at integrally related frequencies to achieve motion at a given bracketing level. A class of systems that can be steered using sinusoids (claimed systems) is defined. Conditions under which a class of two-input systems can be converted into this form are given. >

1,787 citations

Journal ArticleDOI
TL;DR: This discussion elucidates what has been articulated in different ways by a number of researchers in the past several years, namely that constant-curvature kinematics can be considered as consisting of two separate submappings: one that is general and applies to all continuum robots, and another that is robot-specific.
Abstract: Continuum robotics has rapidly become a rich and diverse area of research, with many designs and applications demonstrated. Despite this diversity in form and purpose, there exists remarkable similarity in the fundamental simplified kinematic models that have been applied to continuum robots. However, this can easily be obscured, especially to a newcomer to the field, by the different applications, coordinate frame choices, and analytical formalisms employed. In this paper we review several modeling approaches in a common frame and notational convention, illustrating that for piecewise constant curvature, they produce identical results. This discussion elucidates what has been articulated in different ways by a number of researchers in the past several years, namely that constant-curvature kinematics can be considered as consisting of two separate submappings: one that is general and applies to all continuum robots, and another that is robot-specific. These mappings are then developed both for the single-section and for the multi-section case. Similarly, we discuss the decomposition of differential kinematics (the robotâ??s Jacobian) into robot-specific and robot-independent portions. The paper concludes with a perspective on several of the themes of current research that are shaping the future of continuum robotics.

1,600 citations