scispace - formally typeset
Search or ask a question
Author

Zhanjiang Liu

Bio: Zhanjiang Liu is an academic researcher from Syracuse University. The author has contributed to research in topics: Catfish & Ictalurus. The author has an hindex of 65, co-authored 293 publications receiving 12731 citations. Previous affiliations of Zhanjiang Liu include University of Alabama & Centre national de la recherche scientifique.
Topics: Catfish, Ictalurus, Genome, Gene, Blue catfish


Papers
More filters
Journal ArticleDOI
TL;DR: In this review, the principles, potential power, requirements, advantages, and disadvantages of the various marker types are discussed, along with their applications in a variety of aquaculture studies.

980 citations

Journal ArticleDOI
TL;DR: A draft genome of domesticated C. carpio (strain Songpu) is presented, whose current assembly contains 52,610 protein-coding genes and approximately 92.3% coverage of its paleotetraploidized genome (2n = 100).
Abstract: The common carp, Cyprinus carpio, is one of the most important cyprinid species and globally accounts for 10% of freshwater aquaculture production. Here we present a draft genome of domesticated C. carpio (strain Songpu), whose current assembly contains 52,610 protein-coding genes and approximately 92.3% coverage of its paleotetraploidized genome (2n = 100). The latest round of whole-genome duplication has been estimated to have occurred approximately 8.2 million years ago. Genome resequencing of 33 representative individuals from worldwide populations demonstrates a single origin for C. carpio in 2 subspecies (C. carpio Haematopterus and C. carpio carpio). Integrative genomic and transcriptomic analyses were used to identify loci potentially associated with traits including scaling patterns and skin color. In combination with the high-resolution genetic map, the draft genome paves the way for better molecular studies and improved genome-assisted breeding of C. carpio and other closely related species.

515 citations

Journal ArticleDOI
TL;DR: The authors provide a reference genome assembly, and show that gene expansion is involved in the regulation of frequent molting as well as benthic adaptation of the shrimp.
Abstract: Crustacea, the subphylum of Arthropoda which dominates the aquatic environment, is of major importance in ecology and fisheries. Here we report the genome sequence of the Pacific white shrimp Litopenaeus vannamei, covering ~1.66 Gb (scaffold N50 605.56 Kb) with 25,596 protein-coding genes and a high proportion of simple sequence repeats (>23.93%). The expansion of genes related to vision and locomotion is probably central to its benthic adaptation. Frequent molting of the shrimp may be explained by an intensified ecdysone signal pathway through gene expansion and positive selection. As an important aquaculture organism, L. vannamei has been subjected to high selection pressure during the past 30 years of breeding, and this has had a considerable impact on its genome. Decoding the L. vannamei genome not only provides an insight into the genetic underpinnings of specific biological processes, but also provides valuable information for enhancing crustacean aquaculture. The Pacific white shrimp Litopenaeus vannamei is an important aquaculture species and a promising model for crustacean biology. Here, the authors provide a reference genome assembly, and show that gene expansion is involved in the regulation of frequent molting as well as benthic adaptation of the shrimp.

299 citations

Journal ArticleDOI
TL;DR: The results suggest that GABAB receptors in the ventrolateral thalamus and in the reticular nuclei are involved in an oscillatory activity which underlies the rhythmic spike and wave discharges recorded during spontaneous generalized non-convulsive seizures.

241 citations

Journal ArticleDOI
TL;DR: A high-quality reference genome sequence of channel catfish is reported, providing evidence that lack of secretory calcium-binding phosphoproteins accounts for the evolutionary loss of scales in catfish and demonstrates the power of comparative subtraction of candidate genes for traits of structural significance.
Abstract: Catfish represent 12% of teleost or 6.3% of all vertebrate species, and are of enormous economic value. Here we report a high-quality reference genome sequence of channel catfish (Ictalurus punctatus), the major aquaculture species in the US. The reference genome sequence was validated by genetic mapping of 54,000 SNPs, and annotated with 26,661 predicted protein-coding genes. Through comparative analysis of genomes and transcriptomes of scaled and scaleless fish and scale regeneration experiments, we address the genomic basis for the most striking physical characteristic of catfish, the evolutionary loss of scales and provide evidence that lack of secretory calcium-binding phosphoproteins accounts for the evolutionary loss of scales in catfish. The channel catfish reference genome sequence, along with two additional genome sequences and transcriptomes of scaled catfishes, provide crucial resources for evolutionary and biological studies. This work also demonstrates the power of comparative subtraction of candidate genes for traits of structural significance. Catfish represent 6.3% of all vertebrate species, and occupy a phylogenetic position close to the common ancestor of bony fish. Liu et al. present a reference genome of the channel catfish, and reveal a genomic basis for the evolutionary loss of scales in these species.

237 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI

3,734 citations

Journal ArticleDOI
29 Oct 1993-Science
TL;DR: Analysis of cortical and thalamic networks at many levels, from molecules to single neurons to large neuronal assemblies, with a variety of techniques, is beginning to yield insights into the mechanisms of the generation, modulation, and function of brain oscillations.
Abstract: Sleep is characterized by synchronized events in billions of synaptically coupled neurons in thalamocortical systems. The activation of a series of neuromodulatory transmitter systems during awakening blocks low-frequency oscillations, induces fast rhythms, and allows the brain to recover full responsiveness. Analysis of cortical and thalamic networks at many levels, from molecules to single neurons to large neuronal assemblies, with a variety of techniques, ranging from intracellular recordings in vivo and in vitro to computer simulations, is beginning to yield insights into the mechanisms of the generation, modulation, and function of brain oscillations.

3,382 citations