scispace - formally typeset
Search or ask a question
Author

Zhanyu Ma

Other affiliations: Royal Institute of Technology
Bio: Zhanyu Ma is an academic researcher from Beijing University of Posts and Telecommunications. The author has contributed to research in topics: Discriminative model & Computer science. The author has an hindex of 32, co-authored 185 publications receiving 3218 citations. Previous affiliations of Zhanyu Ma include Royal Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper systematically reviews the development and deployment of smart energy meters, including smart electricity meters, smart heat meters, and smart gas meters, to provide insights and guidelines regarding the future development of smart meters.
Abstract: The significant increase in energy consumption and the rapid development of renewable energy, such as solar power and wind power, have brought huge challenges to energy security and the environment, which, in the meantime, stimulate the development of energy networks toward a more intelligent direction. Smart meters are the most fundamental components in the intelligent energy networks (IENs). In addition to measuring energy flows, smart energy meters can exchange the information on energy consumption and the status of energy networks between utility companies and consumers. Furthermore, smart energy meters can also be used to monitor and control home appliances and other devices according to the individual consumer’s instruction. This paper systematically reviews the development and deployment of smart energy meters, including smart electricity meters, smart heat meters, and smart gas meters. By examining various functions and applications of smart energy meters, as well as associated benefits and costs, this paper provides insights and guidelines regarding the future development of smart meters.

236 citations

Journal ArticleDOI
TL;DR: An approximation to the prior/posterior distribution of the parameters in the beta distribution is introduced and an analytically tractable (closed form) Bayesian approach to the parameter estimation is proposed.
Abstract: Bayesian estimation of the parameters in beta mixture models (BMM) is analytically intractable. The numerical solutions to simulate the posterior distribution are available, but incur high computational cost. In this paper, we introduce an approximation to the prior/posterior distribution of the parameters in the beta distribution and propose an analytically tractable (closed form) Bayesian approach to the parameter estimation. The approach is based on the variational inference (VI) framework. Following the principles of the VI framework and utilizing the relative convexity bound, the extended factorized approximation method is applied to approximate the distribution of the parameters in BMM. In a fully Bayesian model where all of the parameters of the BMM are considered as variables and assigned proper distributions, our approach can asymptotically find the optimal estimate of the parameters posterior distribution. Also, the model complexity can be determined based on the data. The closed-form solution is proposed so that no iterative numerical calculation is required. Meanwhile, our approach avoids the drawback of overfitting in the conventional expectation maximization algorithm. The good performance of this approach is verified by experiments with both synthetic and real data.

206 citations

Journal ArticleDOI
TL;DR: In this article, a mutual channel loss (MC-Loss) is proposed for fine-grained image categorization, which consists of two channel-specific components: a discriminality component and a diversity component.
Abstract: The key to solving fine-grained image categorization is finding discriminate and local regions that correspond to subtle visual traits. Great strides have been made, with complex networks designed specifically to learn part-level discriminate feature representations. In this paper, we show that it is possible to cultivate subtle details without the need for overly complicated network designs or training mechanisms – a single loss is all it takes. The main trick lies with how we delve into individual feature channels early on, as opposed to the convention of starting from a consolidated feature map. The proposed loss function, termed as mutual-channel loss (MC-Loss), consists of two channel-specific components: a discriminality component and a diversity component. The discriminality component forces all feature channels belonging to the same class to be discriminative, through a novel channel-wise attention mechanism. The diversity component additionally constraints channels so that they become mutually exclusive across the spatial dimension. The end result is therefore a set of feature channels, each of which reflects different locally discriminative regions for a specific class. The MC-Loss can be trained end-to-end, without the need for any bounding-box/part annotations, and yields highly discriminative regions during inference. Experimental results show our MC-Loss when implemented on top of common base networks can achieve state-of-the-art performance on all four fine-grained categorization datasets (CUB-Birds, FGVC-Aircraft, Flowers-102, and Stanford Cars). Ablative studies further demonstrate the superiority of the MC-Loss when compared with other recently proposed general-purpose losses for visual classification, on two different base networks. Codes are available at: https://github.com/dongliangchang/Mutual-Channel-Loss .

191 citations

Journal ArticleDOI
TL;DR: A knowledge driven (KD) service offloading decision framework for IoV is proposed, which provides the optimal policy directly from the environment and supports the pre-training at the powerful edge computing node and continually online learning when the vehicular service is executed.
Abstract: The smart vehicles construct Internet of Vehicle (IoV), which can execute various intelligent services. Although the computation capability of a vehicle is limited, multi-type of edge computing nodes provide heterogeneous resources for intelligent vehicular services. When offloading the complex service to the vehicular edge computing node, the decision for its destination should be considered according to numerous factors. This paper mostly formulate the offloading decision as a resource scheduling problem with single or multiple objective function and constraints, where some customized heuristics algorithms are explored. However, offloading multiple data dependence tasks in a complex service is a difficult decision, as an optimal solution must understand the resource requirement, the access network, the user mobility, and importantly the data dependence. Inspired by recent advances in machine learning, we propose a knowledge driven (KD) service offloading decision framework for IoV, which provides the optimal policy directly from the environment. We formulate the offloading decision for the multiple tasks as a long-term planning problem, and explore the recent deep reinforcement learning to obtain the optimal solution. It can scruple the future data dependence of the following tasks when making decision for a current task from the learned offloading knowledge. Moreover, the framework supports the pre-training at the powerful edge computing node and continually online learning when the vehicular service is executed, so that it can adapt the environment changes and can learn policy that are sensible in foresight. The simulation results show that KD service offloading decision converges quickly, adapts to different conditions, and outperforms a greedy offloading decision algorithm.

181 citations

Journal ArticleDOI
TL;DR: The results imply that the two-stage model proposed in the paper outperforms conventional forecast methods in terms of prediction of short-term PV power outputs and associated uncertainties.

159 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
17 Oct 2013-Nature
TL;DR: Data and analytical results for point mutations and small insertions/deletions from 3,281 tumours across 12 tumour types are presented as part of the TCGA Pan-Cancer effort, and clinical association analysis identifies genes having a significant effect on survival.
Abstract: The Cancer Genome Atlas (TCGA) has used the latest sequencing and analysis methods to identify somatic variants across thousands of tumours. Here we present data and analytical results for point mutations and small insertions/deletions from 3,281 tumours across 12 tumour types as part of the TCGA Pan-Cancer effort. We illustrate the distributions of mutation frequencies, types and contexts across tumour types, and establish their links to tissues of origin, environmental/carcinogen influences, and DNA repair defects. Using the integrated data sets, we identified 127 significantly mutated genes from well-known (for example, mitogen-activated protein kinase, phosphatidylinositol-3-OH kinase, Wnt/β-catenin and receptor tyrosine kinase signalling pathways, and cell cycle control) and emerging (for example, histone, histone modification, splicing, metabolism and proteolysis) cellular processes in cancer. The average number of mutations in these significantly mutated genes varies across tumour types; most tumours have two to six, indicating that the number of driver mutations required during oncogenesis is relatively small. Mutations in transcriptional factors/regulators show tissue specificity, whereas histone modifiers are often mutated across several cancer types. Clinical association analysis identifies genes having a significant effect on survival, and investigations of mutations with respect to clonal/subclonal architecture delineate their temporal orders during tumorigenesis. Taken together, these results lay the groundwork for developing new diagnostics and individualizing cancer treatment.

3,658 citations

01 Jan 2004
TL;DR: Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance and describes numerous important application areas such as image based rendering and digital libraries.
Abstract: From the Publisher: The accessible presentation of this book gives both a general view of the entire computer vision enterprise and also offers sufficient detail to be able to build useful applications. Users learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods. A CD-ROM with every copy of the text contains source code for programming practice, color images, and illustrative movies. Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance. Topics are discussed in substantial and increasing depth. Application surveys describe numerous important application areas such as image based rendering and digital libraries. Many important algorithms broken down and illustrated in pseudo code. Appropriate for use by engineers as a comprehensive reference to the computer vision enterprise.

3,627 citations

01 Jan 2006

3,012 citations