scispace - formally typeset
Search or ask a question
Author

Zhaohui Wu

Bio: Zhaohui Wu is an academic researcher from Changsha University. The author has contributed to research in topics: Materials science & Photocatalysis. The author has an hindex of 16, co-authored 30 publications receiving 1848 citations. Previous affiliations of Zhaohui Wu include Kyung Hee University & Wuhan University.

Papers
More filters
Journal ArticleDOI
TL;DR: This review focuses on the recent development and various strategies in the preparation, microstructure, and magnetic properties of bare and surface functionalized iron oxide nanoparticles (IONPs); their corresponding biological application was also discussed.

1,143 citations

Journal ArticleDOI
TL;DR: This review presents a comprehensive overview of shape-controlled inorganic nanomaterials via nucleation and growth theory and the control of experimental conditions (including supersaturation, temperature, surfactants and secondary nucleation), providing a brief account of the shape control of inorganic nanoparticles during wet-chemistry synthetic processes.
Abstract: Inorganic materials with controllable shapes have been an intensely studied subject in nanoscience over the past decades. Control over novel and anisotropic shapes of inorganic nanomaterials differing from those of bulk materials leads to unique and tunable properties for widespread applications such as biomedicine, catalysis, fuels or solar cells and magnetic data storage. This review presents a comprehensive overview of shape-controlled inorganic nanomaterials via nucleation and growth theory and the control of experimental conditions (including supersaturation, temperature, surfactants and secondary nucleation), providing a brief account of the shape control of inorganic nanoparticles during wet-chemistry synthetic processes. Subsequently, typical mechanisms for shape-controlled inorganic nanoparticles and the general shape of the nanoparticles formed by each mechanism are also expounded. Furthermore, the differences between similar mechanisms for the shape control of inorganic nanoparticles are also clearly described. The authors envision that this review will provide valuable guidance on experimental conditions and process control for the synthesis of inorganic nanoparticles with tunable shapes in the solution state.

342 citations

Journal ArticleDOI
TL;DR: In this paper, an atomically thin wurtzite ZnS nanosheets (NSs) were synthesized via photocatalytic oxidation exfoliation and applied in piezocatalysis for the first time.
Abstract: Atomically thin wurtzite ZnS nanosheets (NSs) are synthesized via photocatalytic oxidation exfoliation of ZnS(en)0.5 process in room temperature and applied in piezocatalysis for the first time. On account of the excellent flexible, high piezoelectric coefficient, large mechanical energy capture area, rich and efficient catalytic active sites, the as-prepared ZnS shows superior piezocatalytic performance for H2 production from H2O without any co-catalyst and sacrificial agent. The rate of H2 evolution is as high as 1.08 μmol h−1 mg−1. Furthermore, this work would can not only enrich the high-efficiency piezocatalytic materials system, but can also provide a new idea for the exploitation of piezocatalysts with excellent performance in piezocatalytic H2 evolution from pure water.

117 citations

Journal ArticleDOI
Weijing Yao1, Qingyong Tian1, Jun Liu1, Zhaohui Wu1, Shuyuan Cui1, Jin Ding1, Zhigao Dai1, Wei Wu1 
TL;DR: In this paper, different lanthanide ions-doped β-NaYF4 up-conversion micro-particles (UCMPs) with uniform hexagonal morphology were synthesized on a large-scale (more than 0.5 g) via a facile hydrothermal method.
Abstract: Up-conversion materials can be applied in anti-counterfeit fields because of their high concealment and high up-conversion fluorescence efficiency. Herein, different lanthanide ions-doped β-NaYF4 up-conversion micro-particles (UCMPs) with uniform hexagonal morphology were synthesized on a large-scale (more than 0.5 g) via a facile hydrothermal method. It is very interesting to find out the fluorescence intensity and the eventual morphology of the UCMPs were highly dependent on the reaction conditions. Then, the optimal UCMPs with uniform morphology and strong fluorescence intensity were selected as promising candidates for preparing ink. Eventually, we successfully printed designable and multicolor fluorescent patterns on flexible substrates (common paper and polyethylene terephthalate, PET) using the as-prepared β-NaYF4:Yb3+,Tm3+/Er3+/Eu3+ UCMPs inks. Under ambient conditions, the printed patterns on conventional paper are invisible, while such printed patterns on PET are white. However, all the patterns could display blue, yellow-green and green fluorescence patterns under the irradiation of a 980 nm laser when using the β-NaYF4:Yb3+,Tm3+/Er3+/Eu3+ UCMPs inks. We envision that the UCMPs fluorescent inks-based flexible and rapid screen printing patterns have enormous potential for anti-counterfeit and security applications.

108 citations

Journal ArticleDOI
TL;DR: In this article, newly Z-scheme UV-vis-NIR-activated photocatalysts consisting of β-NaYF4:18% Yb3+, 2% Er3+@TiO2−Ag6Si2O7 (denoted as NaYF 4@T-ASO) were designed and used as full-spectrum response photocatalyststs.
Abstract: The development of efficient full-spectrum-activated photocatalysts has become a research topic of intense interest in environmental remediation or solar energy conversion applications. Herein, newly Z-scheme UV-vis-NIR-activated photocatalysts consisting of β-NaYF4:18% Yb3+, 2% Er3+@TiO2–Ag6Si2O7 (denoted as NaYF4@T–ASO) were designed and used as full-spectrum response photocatalysts. For tailoring NaYF4@T–ASO, the size of in situ deposited ASO nanoparticles on the surface of NaYF4@T microplates was determined by the pumping rate of the AgNO3 precursor, which played indirect roles in the photocatalytic activity with different carrier migration distances. Especially, NaYF4@T–ASO (S10) with the smallest and well distributed ASO nanoparticles showed superior photocatalytic activity than the commercial P25 TiO2 by 15 fold under the stimulated solar light irradiation. The enhanced photocatalytic performance of NaYF4@T–ASO could be ascribed to the synergic effect of the upconversion material and the direct Z-scheme heterojunction formed between TiO2/ASO, where the Z-scheme heterojunction induced efficient separation of photogenerated carriers and highly oxidative species (h+ and ˙O2−). Alternative mechanisms of carriers and energy transfer under various light sources have been proposed and discussed in detail.

77 citations


Cited by
More filters
01 Dec 1991
TL;DR: In this article, self-assembly is defined as the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds.
Abstract: Molecular self-assembly is the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds. Molecular self-assembly is ubiquitous in biological systems and underlies the formation of a wide variety of complex biological structures. Understanding self-assembly and the associated noncovalent interactions that connect complementary interacting molecular surfaces in biological aggregates is a central concern in structural biochemistry. Self-assembly is also emerging as a new strategy in chemical synthesis, with the potential of generating nonbiological structures with dimensions of 1 to 10(2) nanometers (with molecular weights of 10(4) to 10(10) daltons). Structures in the upper part of this range of sizes are presently inaccessible through chemical synthesis, and the ability to prepare them would open a route to structures comparable in size (and perhaps complementary in function) to those that can be prepared by microlithography and other techniques of microfabrication.

2,591 citations

Journal ArticleDOI
TL;DR: In this article, a critical review presents the recent advances and progress in the design and synthesis of various semiconductor photocatalytic technology that converts solar energy into chemical fuel has been widely studied.
Abstract: To solve the problem of the global energy shortage and the pollution of the environment, in recent years, semiconductor photocatalytic technology that converts solar energy into chemical fuel has been widely studied. Regarding semiconductor-based photocatalysts, CdS has attracted extensive attention due to its relatively narrow bandgap for visible-light response and sufficiently negative potential of the conduction band edge for the reduction of protons. Studies have shown that CdS-based photocatalysts possess excellent photocatalytic performance in terms of solar-fuel generation and environmental purification. This critical review presents the recent advances and progress in the design and synthesis of various CdS and CdS-based photocatalysts. The basic physical and chemical properties of CdS and the related growth mechanism have been briefly summarized. Moreover, the applications of CdS-based photocatalysts have been discussed such as in photocatalytic hydrogen production, reduction of CO2 to hydrocarbon fuels and degradation of pollutants. Finally, a brief perspective on the challenges and future directions for the development of CdS and CdS-based photocatalysts are also presented.

1,054 citations

Journal ArticleDOI
TL;DR: The synthesis, surface functionalization and characterization of iron oxide nanoparticles, as well as their (pre‐) clinical use in diagnostic, therapeutic and theranostic settings, are summarized.

618 citations

Journal ArticleDOI
TL;DR: This review provides an updated and critical survey of the ever-expanding material architectures and applications of hollow structures in all branches of catalysis, including bio-, electro-, and photocatalysis.
Abstract: Catalysis is at the core of almost every established and emerging chemical process and also plays a central role in the quest for novel technologies for the sustainable production and conversion of energy. Particularly since the early 2000s, a great surge of interest exists in the design and application of micro- and nanometer-sized materials with hollow interiors as solid catalysts. This review provides an updated and critical survey of the ever-expanding material architectures and applications of hollow structures in all branches of catalysis, including bio-, electro-, and photocatalysis. First, the main synthesis strategies toward hollow materials are succinctly summarized, with emphasis on the (regioselective) incorporation of various types of catalytic functionalities within their different subunits. The principles underlying the scientific and technological interest in hollow materials as solid catalysts, or catalyst carriers, are then comprehensively reviewed. Aspects covered include the stabilizat...

595 citations

Journal ArticleDOI
TL;DR: This Review demonstrates how the diversity of metal nanocrystals can be expanded with endless opportunities by using seeds with well-defined and controllable internal structures in conjunction with a proper combination of capping agent and reduction kinetics.
Abstract: Seed-mediated growth is a powerful and versatile approach for the synthesis of colloidal metal nanocrystals. The vast allure of this approach mainly stems from the staggering degree of control one can achieve over the size, shape, composition, and structure of nanocrystals. These parameters not only control the properties of nanocrystals but also determine their relevance to, and performance in, various applications. The ingenuity and artistry inherent to seed-mediated growth offer extensive promise, enhancing a number of existing applications and opening the door to new developments. This Review demonstrates how the diversity of metal nanocrystals can be expanded with endless opportunities by using seeds with well-defined and controllable internal structures in conjunction with a proper combination of capping agent and reduction kinetics. New capabilities and future directions are also highlighted.

518 citations