scispace - formally typeset
Search or ask a question
Author

Zhaohui Xiao

Bio: Zhaohui Xiao is an academic researcher from Hunan University. The author has contributed to research in topics: Oxygen evolution & Electrocatalyst. The author has an hindex of 17, co-authored 19 publications receiving 3023 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: An efficient Co3 O4 -based OER electrocatalyst is designed by a plasma-engraving strategy, which not only produced higher surface area, but also generated oxygen vacancies on Co 3 O4 surface with more Co(2+) formed to improve the electronic conductivity and create more active defects for OER.
Abstract: Co3O4, which is of mixed valences Co2+ and Co3+, has been extensively investigated as an efficient electrocatalyst for the oxygen evolution reaction (OER). The proper control of Co2+/Co3+ ratio in Co3O4 could lead to modifications on its electronic and thus catalytic properties. Herein, we designed an efficient Co3O4-based OER electrocatalyst by a plasma-engraving strategy, which not only produced higher surface area, but also generated oxygen vacancies on Co3O4 surface with more Co2+ formed. The increased surface area ensures the Co3O4 has more sites for OER, and generated oxygen vacancies on Co3O4 surface improve the electronic conductivity and create more active defects for OER. Compared to pristine Co3O4, the engraved Co3O4 exhibits a much higher current density and a lower onset potential. The specific activity of the plasma-engraved Co3O4 nanosheets (0.055 mA cm−2BET at 1.6 V) is 10 times higher than that of pristine Co3O4, which is contributed by the surface oxygen vacancies.

1,641 citations

Journal ArticleDOI
TL;DR: In this paper, an electrocatalyst with excellent performance for both hydrogen evolution reaction and oxygen evolution reaction (OER) in water splitting was designed by filling the oxygen vacancies with heteroatoms in the VO-rich Co3O4.
Abstract: It is of essential importance to design an electrocatalyst with excellent performance for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in water splitting. Co3O4 has been developed as a highly efficient OER electrocatalyst, but it has almost no activity for HER. In a previous study, it has been demonstrated that the formation of oxygen vacancies (VO) in Co3O4 can significantly enhance the OER activity. However, the stability of VO needs to be considered, especially under the highly oxidizing conditions of the OER process. It is a big challenge to stabilize the VO in Co3O4 while reserving the excellent activity. Filling the oxygen vacancies with heteroatoms in the VO-rich Co3O4 may be a smart strategy to stabilize the VO by compensating the coordination numbers and obtain an even surprising activity due to the modification of electronic properties by heteroatoms. Herein, we successfully transformed VO-rich Co3O4 into an HER-OER electrocatalyst by filling the in situ formed VO in Co3O4 with phosphorus (P-Co3O4) by treating Co3O4 with Ar plasma in the presence of a P precursor. The relatively lower coordination numbers in VO-Co3O4 than those in pristine Co3O4 were evidenced by X-ray adsorption spectroscopy, indicating that the oxygen vacancies were created after Ar plasma etching. On the other hand, the relatively higher coordination numbers in P-Co3O4 than those in VO-Co3O4 and nearly same coordination number as that in pristine Co3O4 strongly suggest the efficient filling of P in the vacancies by treatment with Ar plasma in the presence of a P precursor. The Co–O bonds in Co3O4 consist of octahedral Co3+(Oh)–O and tetrahedral Co2+(Td)–O (Oh, octahedral coordination by six oxygen atoms and Td, tetrahedral coordination by four oxygen atoms). More Co3+(Oh)–O are broken when oxygen vacancies are formed in VO-Co3O4, and more electrons enter the octahedral Co 3d orbital than those entering the tetrahedral Co 3d orbital. Then, with the filling of P in the vacancy site, electrons are transferred out of the Co 3d states, and more Co2+(Td) than Co3+(Oh) are left in P-Co3O4. These results suggest that the favored catalytic ability of P-Co3O4 is dominated by the Co2+(Td) site. P-Co3O4 shows superior electrocatalytic activities for HER and OER (among the best non-precious metal catalysts). Owing to its superior efficiency, P-Co3O4 can directly catalyze overall water splitting with excellent performance. The theoretical calculations illustrated that the improved electrical conductivity and intermediate binding by P-filling contributed significantly to the enhanced HER and OER activity of Co3O4.

759 citations

Journal ArticleDOI
TL;DR: Insight is provided into the defect mechanism in Co3O4 for OER in a dynamic way by observing the surface dynamic evolution process of defective electrocatalysts and identifying the real active sites during the electrocatalysis process.
Abstract: The exact role of a defect structure on transition metal compounds for electrocatalytic oxygen evolution reaction (OER), which is a very dynamic process, remains unclear. Studying the structure-activity relationship of defective electrocatalysts under operando conditions is crucial for understanding their intrinsic reaction mechanism and dynamic behavior of defect sites. Co3O4 with rich oxygen vacancy (VO) has been reported to efficiently catalyze OER. Herein, we constructed pure spinel Co3O4 and VO-rich Co3O4 as catalyst models to study the defect mechanism and investigate the dynamic behavior of defect sites during the electrocatalytic OER process by various operando characterizations. Operando electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) implied that the VO could facilitate the pre-oxidation of the low-valence Co (Co2+, part of which was induced by the VO to balance the charge) at a relatively lower applied potential. This observation confirmed that the VO could initialize the surface reconstruction of VO-Co3O4 prior to the occurrence of the OER process. The quasi-operando X-ray photoelectron spectroscopy (XPS) and operando X-ray absorption fine structure (XAFS) results further demonstrated the oxygen vacancies were filled with OH• first for VO-Co3O4 and facilitated pre-oxidation of low-valence Co and promoted reconstruction/deprotonation of intermediate Co-OOH•. This work provides insight into the defect mechanism in Co3O4 for OER in a dynamic way by observing the surface dynamic evolution process of defective electrocatalysts and identifying the real active sites during the electrocatalysis process. The current finding would motivate the community to focus more on the dynamic behavior of defect electrocatalysts.

556 citations

Journal ArticleDOI
01 Jan 2019
TL;DR: In this article, a proof-of-concept study on the active site evaluation for a highly oriented pyrolytic graphite catalyst with specific pentagon carbon defective patterns (D-HOPG) is presented.
Abstract: Owing to the difficulty in controlling the dopant or defect types and their homogeneity in carbon materials, it is still a controversial issue to identify the active sites of carbon-based metal-free catalysts. Here we report a proof-of-concept study on the active-site evaluation for a highly oriented pyrolytic graphite catalyst with specific pentagon carbon defective patterns (D-HOPG). It is demonstrated that specific carbon defect types (an edged pentagon in this work) could be selectively created via controllable nitrogen doping. Work-function analyses coupled with macro and micro-electrochemical performance measurements suggest that the pentagon defects in D-HOPG served as major active sites for the acidic oxygen reduction reaction, even much superior to the pyridinic nitrogen sites in nitrogen-doped highly oriented pyrolytic graphite. This work enables us to elucidate the relative importance of the specific carbon defects versus nitrogen-dopant species and their respective contributions to the observed overall acidic oxygen reduction reaction activity.

354 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The fundamentals of HER are summarized and the recent state-of-the-art advances in the low-cost and high-performance catalysts based on noble and non-noble metals, as well as metal-free HER electrocatalysts are reviewed.
Abstract: Hydrogen fuel is considered as the cleanest renewable resource and the primary alternative to fossil fuels for future energy supply. Sustainable hydrogen generation is the major prerequisite to realize future hydrogen economy. The electrocatalytic hydrogen evolution reaction (HER), as the vital step of water electrolysis to H2 production, has been the subject of extensive study over the past decades. In this comprehensive review, we first summarize the fundamentals of HER and review the recent state-of-the-art advances in the low-cost and high-performance catalysts based on noble and non-noble metals, as well as metal-free HER electrocatalysts. We systemically discuss the insights into the relationship among the catalytic activity, morphology, structure, composition, and synthetic method. Strategies for developing an effective catalyst, including increasing the intrinsic activity of active sites and/or increasing the number of active sites, are summarized and highlighted. Finally, the challenges, perspectives, and research directions of HER electrocatalysis are featured.

1,387 citations

Journal ArticleDOI
TL;DR: The fundamental relationships between electronic structure, adsorption energy, and apparent activity for a wide variety of 2D electrocatalysts are described with the goal of providing a better understanding of these emerging nanomaterials at the atomic level.
Abstract: Over the past few decades, the design and development of advanced electrocatalysts for efficient energy conversion technologies have been subjects of extensive study. With the discovery of graphene, two-dimensional (2D) nanomaterials have emerged as some of the most promising candidates for heterogeneous electrocatalysts due to their unique physical, chemical, and electronic properties. Here, we review 2D-nanomaterial-based electrocatalysts for selected electrocatalytic processes. We first discuss the unique advances in 2D electrocatalysts based on different compositions and functions followed by specific design principles. Following this overview, we discuss various 2D electrocatalysts for electrocatalytic processes involved in the water cycle, carbon cycle, and nitrogen cycle from their fundamental conception to their functional application. We place a significant emphasis on different engineering strategies for 2D nanomaterials and the influence these strategies have on intrinsic material performance, ...

1,363 citations

Journal ArticleDOI
TL;DR: In this paper, a review article summarizes the very recent efforts in the field of OER electrocatalysis along with the faced challenges and solutions to these challenges also outline with appropriate examples of scientific literatures.

1,121 citations

Journal ArticleDOI
TL;DR: This article summarized the recent progress in understanding OER mechanisms, which include the conventional adsorbate evolution mechanism (AEM) and lattice-oxygen-mediated mechanism (LOM) from both theoretical and experimental aspects, and introduced strategies to reduce overpotential.
Abstract: Electricity-driven water splitting can facilitate the storage of electrical energy in the form of hydrogen gas. As a half-reaction of electricity-driven water splitting, the oxygen evolution reaction (OER) is the major bottleneck due to the sluggish kinetics of this four-electron transfer reaction. Developing low-cost and robust OER catalysts is critical to solving this efficiency problem in water splitting. The catalyst design has to be built based on the fundamental understanding of the OER mechanism and the origin of the reaction overpotential. In this article, we summarize the recent progress in understanding OER mechanisms, which include the conventional adsorbate evolution mechanism (AEM) and lattice-oxygen-mediated mechanism (LOM) from both theoretical and experimental aspects. We start with the discussion on the AEM and its linked scaling relations among various reaction intermediates. The strategies to reduce overpotential based on the AEM and its derived descriptors are then introduced. To further reduce the OER overpotential, it is necessary to break the scaling relation of HOO* and HO* intermediates in conventional AEM to go beyond the activity limitation of the volcano relationship. Strategies such as stabilization of HOO*, proton acceptor functionality, and switching the OER pathway to LOM are discussed. The remaining questions on the OER and related perspectives are also presented at the end.

1,107 citations

Journal ArticleDOI
TL;DR: In this article, the rational design of electrocatalysts and photo(electro) catalysts for N2 reduction to NH3 under ambient conditions is highlighted, with a special emphasis on the relationship between their physicochemical properties and NH3 production performance.
Abstract: As one of the most important chemicals and carbon-free energy carriers, ammonia (NH3) has a worldwide annual production of ∼150 million tons, and is mainly produced by the traditional high-temperature and high-pressure Haber–Bosch process which consumes massive amounts of energy. Very recently, electrocatalytic and photo(electro)catalytic reduction of N2 to NH3, which can be performed at ambient conditions using renewable energy, have received tremendous attention. The overall performance of these electrocatalytic and photo(electro)catalytic systems is largely dictated by their core components, catalysts. This perspective for the first time highlights the rational design of electrocatalysts and photo(electro)catalysts for N2 reduction to NH3 under ambient conditions. Fundamental theory of catalytic reaction pathways for the N2 reduction reaction and the corresponding material design principles are introduced first. Then, recently developed electrocatalysts and photo(electro)catalysts are summarized, with a special emphasis on the relationship between their physicochemical properties and NH3 production performance. Finally, the opportunities in this emerging research field, in particular, the strategy of combining experimental and theoretical techniques to design efficient and stable catalysts for NH3 production, are outlined.

1,098 citations