scispace - formally typeset
Search or ask a question
Author

Zhe Zhao

Bio: Zhe Zhao is an academic researcher from University of Southern California. The author has contributed to research in topics: Angular momentum & Orbital angular momentum multiplexing. The author has an hindex of 33, co-authored 144 publications receiving 4460 citations. Previous affiliations of Zhe Zhao include Huazhong University of Science and Technology.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors review recent progress in OAM beam generation/detection, multiplexing/demultiplexing, and its potential applications in different scenarios including free-space optical communications, fiber-optic communications, and RF communications.
Abstract: Orbital angular momentum (OAM), which describes the “phase twist” (helical phase pattern) of light beams, has recently gained interest due to its potential applications in many diverse areas. Particularly promising is the use of OAM for optical communications since: (i) coaxially propagating OAM beams with different azimuthal OAM states are mutually orthogonal, (ii) inter-beam crosstalk can be minimized, and (iii) the beams can be efficiently multiplexed and demultiplexed. As a result, multiple OAM states could be used as different carriers for multiplexing and transmitting multiple data streams, thereby potentially increasing the system capacity. In this paper, we review recent progress in OAM beam generation/detection, multiplexing/demultiplexing, and its potential applications in different scenarios including free-space optical communications, fiber-optic communications, and RF communications. Technical challenges and perspectives of OAM beams are also discussed.

1,398 citations

Journal ArticleDOI
TL;DR: This work demonstrates a 32-Gbit’s−1 millimetre-wave link over 2.5 metres with a spectral efficiency of ~16 bit s− 1 Hz−1 using four independent orbital–angular momentum beams on each of two polarizations, and shows an 8-Gbits−1 link containing two orbital angular momentum beams with crosstalk less than −12.5 dB.
Abstract: One property of electromagnetic waves that has been recently explored is the ability to multiplex multiple beams, such that each beam has a unique helical phase front. The amount of phase front ‘twisting’ indicates the orbital angular momentum state number, and beams with different orbital angular momentum are orthogonal. Such orbital angular momentum based multiplexing can potentially increase the system capacity and spectral efficiency of millimetre-wave wireless communication links with a single aperture pair by transmitting multiple coaxial data streams. Here we demonstrate a 32-Gbit s−1 millimetre-wave link over 2.5 metres with a spectral efficiency of ~16 bit s−1 Hz−1 using four independent orbital–angular momentum beams on each of two polarizations. All eight orbital angular momentum channels are recovered with bit-error rates below 3.8 × 10−3. In addition, we demonstrate a millimetre-wave orbital angular momentum mode demultiplexer to demultiplex four orbital angular momentum channels with crosstalk less than −12.5 dB and show an 8-Gbit s−1 link containing two orbital angular momentum beams on each of two polarizations. High speed data transmission using orbital angular momentum beams has been recently demonstrated. Here, Yan et al. demonstrate a 32 Gbit/s millimetre-wave communication link using eight coaxially propagating independent orbital angular momentum beams with four orbital angular momentum states on two orthogonal polarizations.

1,002 citations

Journal ArticleDOI
20 Apr 2015
TL;DR: In this paper, the trade-offs for different transmitted beam sizes, receiver aperture sizes, and mode spacing of the transmitted OAM beams under given lateral displacements or receiver angular errors were investigated.
Abstract: The capacity of free-space optical (FSO) communication links could potentially be increased by the simultaneous transmission of multiple orbital angular momentum (OAM) beams. For such an OAM multiplexing approach, one requires the collection of adequate power as well as proportion of the phase front for a system with minimal crosstalk. Here we study the design considerations for an OAM-multiplexed free-space data link, analyzing the power loss, channel crosstalk, and power penalty of the link in the case of limited-size receiver apertures and misalignment between the transmitter and the receiver. We describe the trade-offs for different transmitted beam sizes, receiver aperture sizes, and mode spacing of the transmitted OAM beams under given lateral displacements or receiver angular errors. Through simulations and some experiments, we show that (1) a system with a larger transmitted beam size and a larger receiver aperture is more tolerant to lateral displacement but less tolerant to the receiver angular error, and (2) a system with a larger mode spacing, which uses larger OAM charges, suffers more system power loss but less channel crosstalk; thus, a system with a small mode spacing shows a lower system power penalty when system power loss dominates (e.g., a small lateral displacement or receiver angular error), whereas that with a larger mode spacing shows a lower power penalty when channel crosstalk dominates (e.g., a larger lateral displacement or receiver angular error). This work could be beneficial to the practical implementation of OAM-multiplexed FSO links.

197 citations

Journal ArticleDOI
TL;DR: A simple approach to broadband generation of orbital angular momentum (OAM) carrying vector beams based on compact metamaterials that consists of two concentric rings in a gold film, where each ring is composed of subwavelength rectangular apertures with gradually varied orientation.
Abstract: We propose a simple approach to broadband generation of orbital angular momentum (OAM) carrying vector beams based on compact metamaterials. It consists of two concentric rings in a gold film, where each ring is composed of subwavelength rectangular apertures with gradually varied orientation. The subwavelength rectangular aperture serves as a localized spatial polarizer. We show the generation of different OAM-carrying vector beams with OAM charge number and polarization order varying from -3 to +3 using a 11.2×11.2 μm device. The extinction ratio can exceed 20 dB, and the operation bandwidth (1500 nm) can cover from 1000 to 2500 nm (from near-infrared to mid-infrared). The device provides three degrees of freedom (polarization order l, polarization of input beam σ, and initial orientation angle α(0)) to flexibly generate different OAM-carrying vector beams. We can use a single device to generate two OAM-carrying vector beams with opposite charge sign of OAM by simply controlling the polarization of the input beam. We further study the performance dependence of the designed metamaterials on the offset of the initial orientation angle, length, and width of the rectangular apertures. The obtained results indicate favorable fabrication tolerance.

182 citations

Journal ArticleDOI
TL;DR: Both experimental and simulation results show that power penalties increase rapidly when the displacement increases, and the influence of channel impairments on the received power, intermodal crosstalk among channels, and system power penalties is investigated.
Abstract: We experimentally demonstrate and characterize the performance of a 400-Gbit/s orbital angular momentum (OAM) multiplexed free-space optical link over 120 m on the roof of a building. Four OAM beams, each carrying a 100-Gbit/s quadrature-phase-shift-keyed channel are multiplexed and transmitted. We investigate the influence of channel impairments on the received power, intermodal crosstalk among channels, and system power penalties. Without laser tracking and compensation systems, the measured received power and crosstalk among OAM channels fluctuate by 4.5 dB and 5 dB, respectively, over 180 s. For a beam displacement of 2 mm that corresponds to a pointing error less than 16.7 μrad, the link bit error rates are below the forward error correction threshold of 3.8×10−3 for all channels. Both experimental and simulation results show that power penalties increase rapidly when the displacement increases.

166 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 Jan 2016
TL;DR: In this paper, the authors present the principles of optics electromagnetic theory of propagation interference and diffraction of light, which can be used to find a good book with a cup of coffee in the afternoon, instead of facing with some infectious bugs inside their computer.
Abstract: Thank you for reading principles of optics electromagnetic theory of propagation interference and diffraction of light. As you may know, people have search hundreds times for their favorite novels like this principles of optics electromagnetic theory of propagation interference and diffraction of light, but end up in harmful downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they are facing with some infectious bugs inside their computer.

2,213 citations

Journal ArticleDOI
TL;DR: In this article, the authors review recent progress in OAM beam generation/detection, multiplexing/demultiplexing, and its potential applications in different scenarios including free-space optical communications, fiber-optic communications, and RF communications.
Abstract: Orbital angular momentum (OAM), which describes the “phase twist” (helical phase pattern) of light beams, has recently gained interest due to its potential applications in many diverse areas. Particularly promising is the use of OAM for optical communications since: (i) coaxially propagating OAM beams with different azimuthal OAM states are mutually orthogonal, (ii) inter-beam crosstalk can be minimized, and (iii) the beams can be efficiently multiplexed and demultiplexed. As a result, multiple OAM states could be used as different carriers for multiplexing and transmitting multiple data streams, thereby potentially increasing the system capacity. In this paper, we review recent progress in OAM beam generation/detection, multiplexing/demultiplexing, and its potential applications in different scenarios including free-space optical communications, fiber-optic communications, and RF communications. Technical challenges and perspectives of OAM beams are also discussed.

1,398 citations

Journal Article
J. Walkup1
TL;DR: Development of this more comprehensive model of the behavior of light draws upon the use of tools traditionally available to the electrical engineer, such as linear system theory and the theory of stochastic processes.
Abstract: Course Description This is an advanced course in which we explore the field of Statistical Optics. Topics covered include such subjects as the statistical properties of natural (thermal) and laser light, spatial and temporal coherence, effects of partial coherence on optical imaging instruments, effects on imaging due to randomly inhomogeneous media, and a statistical treatment of the detection of light. Development of this more comprehensive model of the behavior of light draws upon the use of tools traditionally available to the electrical engineer, such as linear system theory and the theory of stochastic processes.

1,364 citations

Journal ArticleDOI
TL;DR: This article presents a large-dimensional and autonomous network architecture that integrates space, air, ground, and underwater networks to provide ubiquitous and unlimited wireless connectivity and identifies several promising technologies for the 6G ecosystem.
Abstract: A key enabler for the intelligent information society of 2030, 6G networks are expected to provide performance superior to 5G and satisfy emerging services and applications. In this article, we present our vision of what 6G will be and describe usage scenarios and requirements for multi-terabyte per second (Tb/s) and intelligent 6G networks. We present a large-dimensional and autonomous network architecture that integrates space, air, ground, and underwater networks to provide ubiquitous and unlimited wireless connectivity. We also discuss artificial intelligence (AI) and machine learning [1], [2] for autonomous networks and innovative air-interface design. Finally, we identify several promising technologies for the 6G ecosystem, including terahertz (THz) communications, very-large-scale antenna arrays [i.e., supermassive (SM) multiple-input, multiple-output (MIMO)], large intelligent surfaces (LISs) and holographic beamforming (HBF), orbital angular momentum (OAM) multiplexing, laser and visible-light communications (VLC), blockchain-based spectrum sharing, quantum communications and computing, molecular communications, and the Internet of Nano-Things.

1,332 citations