scispace - formally typeset
Search or ask a question
Author

Zhechen Zhu

Bio: Zhechen Zhu is an academic researcher from Brunel University London. The author has contributed to research in topics: Genetic programming & Quadrature amplitude modulation. The author has an hindex of 10, co-authored 33 publications receiving 622 citations. Previous affiliations of Zhechen Zhu include Soochow University (Suzhou) & University of Liverpool.

Papers
More filters
Journal ArticleDOI
TL;DR: This paper explores the use of Genetic Programming in combination with K-nearest neighbor (KNN) for AMC and demonstrates that the proposed method provides better classification performance compared to other recent methods.
Abstract: Automatic Modulation Classification (AMC) is an intermediate step between signal detection and demodulation. It is a very important process for a receiver that has no, or limited, knowledge of received signals. It is important for many areas such as spectrum management, interference identification and for various other civilian and military applications. This paper explores the use of Genetic Programming (GP) in combination with K-nearest neighbor (KNN) for AMC. KNN has been used to evaluate fitness of GP individuals during the training phase. Additionally, in the testing phase, KNN has been used for deducing the classification performance of the best individual produced by GP. Four modulation types are considered here: BPSK, QPSK, QAM16 and QAM64. Cumulants have been used as input features for GP. The classification process has been divided into two-stages for improving the classification accuracy. Simulation results demonstrate that the proposed method provides better classification performance compared to other recent methods.

263 citations

Book
15 Dec 2014
TL;DR: This book offers comprehensive documentation of AMC models, algorithms and implementations for successful modulation recognition, as well as guidance on state-of-the-art classification designs with specific military and civilian applications in mind.
Abstract: Automatic Modulation Classification (AMC) has been a key technology in many military, security, and civilian telecommunication applications for decades. In military and security applications, modulation often serves as another level of encryption; in modern civilian applications, multiple modulation types can be employed by a signal transmitter to control the data rate and link reliability. This book offers comprehensive documentation of AMC models, algorithms and implementations for successful modulation recognition. It provides an invaluable theoretical and numerical comparison of AMC algorithms, as well as guidance on state-of-the-art classification designs with specific military and civilian applications in mind. Key Features: Provides an important collection of AMC algorithms in five major categories, from likelihood-based classifiers and distribution-test-based classifiers to feature-based classifiers, machine learning assisted classifiers and blind modulation classifiers Lists detailed implementation for each algorithm based on a unified theoretical background and a comprehensive theoretical and numerical performance comparison Gives clear guidance for the design of specific automatic modulation classifiers for different practical applications in both civilian and military communication systems Includes a MATLAB toolbox on a companion website offering the implementation of a selection of methods discussed in the book

129 citations

Journal ArticleDOI
TL;DR: The results and their comparisons with other methods demonstrate that the proposed method exhibits superior performance over other recent methods.
Abstract: The ultimate aim of this research is to facilitate the diagnosis of diabetes, a rapidly increasing disease in the world. In this research a genetic programming (GP) based method has been used for diabetes classification. GP has been used to generate new features by making combinations of the existing diabetes features, without prior knowledge of the probability distribution. The proposed method has three stages: features selection is performed at the first stage using t-test, Kolmogorov–Smirnov test, Kullback–Leibler divergence test, F-score selection, and GP. The results of feature selection methods are used to prepare an ordered list of original features where features are arranged in decreasing order of importance. Different subsets of original features are prepared by adding features one by one in each subset using sequential forward selection method according to the ordered list. At the second stage, GP is used to generate new features from each subset of original diabetes features, by making non-linear combinations of the original features. A variation of GP called GP with comparative partner selection (GP-CPS), utilising the strengths and the weaknesses of GP generated features, has been used at the second stage. The performance of GP generated features for classification is tested using the k-nearest neighbor and support vector machine classifiers at the last stage. The results and their comparisons with other methods demonstrate that the proposed method exhibits superior performance over other recent methods.

89 citations

Journal ArticleDOI
TL;DR: A low complexity minimum distance centroid estimator is suggested to estimate the channel gain and carrier phase jointly and numerical results show that the estimator provides reliable estimation of signal centroids, enabling an accurate classification with a non-parametric likelihood function.
Abstract: In this paper, we propose a blind modulation classifier that differs from most existing classifiers. A low complexity minimum distance centroid estimator is suggested to estimate the channel gain and carrier phase jointly. The estimation is achieved by minimizing a signal-to-centroid distance. A new non-parametric likelihood function is proposed for fast classification with unknown noise variance and distribution. Numerical results show that the estimator provides reliable estimation of signal centroids, enabling an accurate classification with a non-parametric likelihood function. When different channel conditions are simulated, the proposed blind classifier achieves similar classification accuracy versus non-blind state-of-the-art classifiers while being more robust and having much lower complexity.

52 citations

Journal ArticleDOI
TL;DR: Experimental results show that the proposed ODST classifier has advantages in both classification accuracy and computational complexity over most existing classifiers.

37 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A systematic review of the applications of machine learning, data mining techniques and tools in the field of diabetes research with respect to a) Prediction and Diagnosis, b) Diabetic Complications, c) Genetic Background and Environment, and e) Health Care and Management with the first category appearing to be the most popular.
Abstract: The remarkable advances in biotechnology and health sciences have led to a significant production of data, such as high throughput genetic data and clinical information, generated from large Electronic Health Records (EHRs). To this end, application of machine learning and data mining methods in biosciences is presently, more than ever before, vital and indispensable in efforts to transform intelligently all available information into valuable knowledge. Diabetes mellitus (DM) is defined as a group of metabolic disorders exerting significant pressure on human health worldwide. Extensive research in all aspects of diabetes (diagnosis, etiopathophysiology, therapy, etc.) has led to the generation of huge amounts of data. The aim of the present study is to conduct a systematic review of the applications of machine learning, data mining techniques and tools in the field of diabetes research with respect to a) Prediction and Diagnosis, b) Diabetic Complications, c) Genetic Background and Environment, and e) Health Care and Management with the first category appearing to be the most popular. A wide range of machine learning algorithms were employed. In general, 85% of those used were characterized by supervised learning approaches and 15% by unsupervised ones, and more specifically, association rules. Support vector machines (SVM) arise as the most successful and widely used algorithm. Concerning the type of data, clinical datasets were mainly used. The title applications in the selected articles project the usefulness of extracting valuable knowledge leading to new hypotheses targeting deeper understanding and further investigation in DM.

811 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning and investigate their employment in the compelling applications of wireless networks, including heterogeneous networks, cognitive radios (CR), Internet of Things (IoT), machine to machine networks (M2M), and so on.
Abstract: Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of Things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.

413 citations

Journal ArticleDOI
TL;DR: This paper develops several methods to represent modulated signals in data formats with gridlike topologies for the CNN and demonstrates the significant performance advantage and application feasibility of the DL-based approach for modulation classification.
Abstract: Deep learning (DL) is a new machine learning (ML) methodology that has found successful implementations in many application domains. However, its usage in communications systems has not been well explored. This paper investigates the use of the DL in modulation classification, which is a major task in many communications systems. The DL relies on a massive amount of data and, for research and applications, this can be easily available in communications systems. Furthermore, unlike the ML, the DL has the advantage of not requiring manual feature selections, which significantly reduces the task complexity in modulation classification. In this paper, we use two convolutional neural network (CNN)-based DL models, AlexNet and GoogLeNet. Specifically, we develop several methods to represent modulated signals in data formats with gridlike topologies for the CNN. The impacts of representation on classification performance are also analyzed. In addition, comparisons with traditional cumulant and ML-based algorithms are presented. Experimental results demonstrate the significant performance advantage and application feasibility of the DL-based approach for modulation classification.

355 citations

Journal ArticleDOI
TL;DR: This paper explores the use of Genetic Programming in combination with K-nearest neighbor (KNN) for AMC and demonstrates that the proposed method provides better classification performance compared to other recent methods.
Abstract: Automatic Modulation Classification (AMC) is an intermediate step between signal detection and demodulation. It is a very important process for a receiver that has no, or limited, knowledge of received signals. It is important for many areas such as spectrum management, interference identification and for various other civilian and military applications. This paper explores the use of Genetic Programming (GP) in combination with K-nearest neighbor (KNN) for AMC. KNN has been used to evaluate fitness of GP individuals during the training phase. Additionally, in the testing phase, KNN has been used for deducing the classification performance of the best individual produced by GP. Four modulation types are considered here: BPSK, QPSK, QAM16 and QAM64. Cumulants have been used as input features for GP. The classification process has been divided into two-stages for improving the classification accuracy. Simulation results demonstrate that the proposed method provides better classification performance compared to other recent methods.

263 citations

Journal ArticleDOI
TL;DR: This survey analyzes and discusses the state of the art in the field, organizing the existing methods into different categories, and restricts itself to studies where semantics is intended as the set of output values of a program on the training data.
Abstract: Several methods to incorporate semantic awareness in genetic programming have been proposed in the last few years. These methods cover fundamental parts of the evolutionary process: from the population initialization, through different ways of modifying or extending the existing genetic operators, to formal methods, until the definition of completely new genetic operators. The objectives are also distinct: from the maintenance of semantic diversity to the study of semantic locality; from the use of semantics for constructing solutions which obey certain constraints to the exploitation of the geometry of the semantic topological space aimed at defining easy-to-search fitness landscapes. All these approaches have shown, in different ways and amounts, that incorporating semantic awareness may help improving the power of genetic programming. This survey analyzes and discusses the state of the art in the field, organizing the existing methods into different categories. It restricts itself to studies where semantics is intended as the set of output values of a program on the training data, a definition that is common to a rather large set of recent contributions. It does not discuss methods for incorporating semantic information into grammar-based genetic programming or approaches based on formal methods. The objective is keeping the community updated on this interesting research track, hoping to motivate new and stimulating contributions.

163 citations