scispace - formally typeset
Search or ask a question
Author

Zhen Gao

Other affiliations: Tsinghua University
Bio: Zhen Gao is an academic researcher from Beijing Institute of Technology. The author has contributed to research in topics: MIMO & Communication channel. The author has an hindex of 26, co-authored 104 publications receiving 2667 citations. Previous affiliations of Zhen Gao include Tsinghua University.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: A spatially common sparsity based adaptive channel estimation and feedback scheme for frequency division duplex based massive multi-input multi-output (MIMO) systems, which adapts training overhead and pilot design to reliably estimate and feed back the downlink channel state information (CSI) with significantly reduced overhead.
Abstract: This paper proposes a spatially common sparsity based adaptive channel estimation and feedback scheme for frequency division duplex based massive multi-input multi-output (MIMO) systems, which adapts training overhead and pilot design to reliably estimate and feed back the downlink channel state information (CSI) with significantly reduced overhead. Specifically, a nonorthogonal downlink pilot design is first proposed, which is very different from standard orthogonal pilots. By exploiting the spatially common sparsity of massive MIMO channels, a compressive sensing (CS) based adaptive CSI acquisition scheme is proposed, where the consumed time slot overhead only adaptively depends on the sparsity level of the channels. In addition, a distributed sparsity adaptive matching pursuit algorithm is proposed to jointly estimate the channels of multiple subcarriers. Furthermore, by exploiting the temporal channel correlation, a closed-loop channel tracking scheme is provided, which adaptively designs the nonorthogonal pilot according to the previous channel estimation to achieve an enhanced CSI acquisition. Finally, we generalize the results of the multiple-measurement-vectors case in CS and derive the Cramer–Rao lower bound of the proposed scheme, which enlightens us to design the nonorthogonal pilot signals for the improved performance. Simulation results demonstrate that the proposed scheme outperforms its counterparts, and it is capable of approaching the performance bound.

423 citations

Journal ArticleDOI
TL;DR: The feasibility of mmWave massive-MIMO-based wireless backhaul for 5G UDN is discussed, and the benefits and challenges are addressed, and a digitally controlled phase shifter network (DPSN)-based hybrid precoding/combining scheme for mmWavemassive MIMO is proposed.
Abstract: The ultra-dense network (UDN) has been considered as a promising candidate for future 5G networks to meet the explosive data demand. To realize UDN, a reliable, gigahertz bandwidth, and cost-effective backhaul connecting ultradense small-cell BSs and macrocell BS are prerequisite. Millimeter-wave can provide the potential gigabit-per-second traffic for wireless backhaul. Moreover, mmWave can easily be integrated with massive MIMO for improved link reliability. In this article, we discuss the feasibility of mmWave massive-MIMO-based wireless backhaul for 5G UDN, and the benefits and challenges are also addressed. In particular, we propose a digitally controlled phase shifter network (DPSN)-based hybrid precoding/combining scheme for mmWave massive MIMO, whereby the low-rank property of the mmWave massive MIMO channel matrix is leveraged to reduce the required cost and complexity of a transceiver with a negligible performance loss. One key feature of the proposed scheme is that the macrocell BS can simultaneously support multiple small-cell BSs with multiple streams for each small-cell BS, which is essentially different from conventional hybrid precoding/combining schemes, typically limited to single-user MIMO with multiple streams or multi-user MIMO with single stream for each user. Based on the proposed scheme, we further explore the fundamental issues of developing mmWave massive MIMO for wireless backhaul, and the associated challenges, insight, and prospects to enable mmWave massive-MIMO-based wireless backhaul for 5G UDN are discussed.

418 citations

Journal ArticleDOI
TL;DR: An adaptive access scheme is proposed, which adapts the access latency to guarantee reliable massive access for practical systems with unknown channel sparsity level and the state evolution of the proposed GMMV-AMP algorithm is derived to predict its performance.
Abstract: This paper considers massive access in massive multiple-input multiple-output (MIMO) systems and proposes an adaptive active user detection and channel estimation scheme based on compressive sensing. By exploiting the sporadic traffic of massive connected user equipments and the virtual angular domain sparsity of massive MIMO channels, the proposed scheme can support massive access with dramatically reduced access latency. Specifically, we design non-orthogonal pseudo-random pilots for uplink broadband massive access, and formulate the active user detection and channel estimation as a generalized multiple measurement vector compressive sensing problem. Furthermore, by leveraging the structured sparsity of the uplink channel matrix, we propose an efficient generalized multiple measurement vector approximate message passing (GMMV-AMP) algorithm to realize joint active user detection and channel estimation based on a spatial domain or an angular domain channel model. To jointly exploit the channel sparsity present in both the spatial and the angular domains for enhanced performance, a Turbo-GMMV-AMP algorithm is developed for detecting the active users and estimating their channels in an alternating manner. Finally, an adaptive access scheme is proposed, which adapts the access latency to guarantee reliable massive access for practical systems with unknown channel sparsity level. Additionally, the state evolution of the proposed GMMV-AMP algorithm is derived to predict its performance. Simulation results demonstrate the superiority of the proposed active user detection and channel estimation schemes compared to several baseline schemes.

262 citations

Journal ArticleDOI
TL;DR: A distributed compressive sensing-based channel estimation scheme for mmWave massive MIMO over frequency selective fading (FSF) channels can solve the power leakage problem caused by the continuous angles of arrival or departure.
Abstract: This letter proposes a multi-user uplink channel estimation scheme for mmWave massive MIMO over frequency selective fading (FSF) channels. Specifically, by exploiting the angle-domain structured sparsity of mmWave FSF channels, a distributed compressive sensing-based channel estimation scheme is proposed. Moreover, by using the grid matching pursuit strategy with adaptive measurement matrix, the proposed algorithm can solve the power leakage problem caused by the continuous angles of arrival or departure. Simulation results verify the good performance of the proposed solution.

235 citations

Journal ArticleDOI
TL;DR: A deep denoising neural network assisted compressive channel estimation for mmWave IRS systems to reduce the training overhead and demonstrate the superiority of the proposed solution over state-of-the-art solutions.
Abstract: Integrating large intelligent reflecting surfaces (IRS) into millimeter-wave (mmWave) massive multi-input-multi-ouput (MIMO) has been a promising approach for improved coverage and throughput. Most existing work assumes the ideal channel estimation, which can be challenging due to the high-dimensional cascaded MIMO channels and passive reflecting elements. Therefore, this paper proposes a deep denoising neural network assisted compressive channel estimation for mmWave IRS systems to reduce the training overhead. Specifically, we first introduce a hybrid passive/active IRS architecture, where very few receive chains are employed to estimate the uplink user-to-IRS channels. At the channel training stage, only a small proportion of elements will be successively activated to sound the partial channels. Moreover, the complete channel matrix can be reconstructed from the limited measurements based on compressive sensing, whereby the common sparsity of angular domain mmWave MIMO channels among different subcarriers is leveraged for improved accuracy. Besides, a complex-valued denoising convolution neural network (CV-DnCNN) is further proposed for enhanced performance. Simulation results demonstrate the superiority of the proposed solution over state-of-the-art solutions.

214 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a comprehensive tutorial on the potential benefits and applications of UAVs in wireless communications is presented, and the important challenges and the fundamental tradeoffs in UAV-enabled wireless networks are thoroughly investigated.
Abstract: The use of flying platforms such as unmanned aerial vehicles (UAVs), popularly known as drones, is rapidly growing. In particular, with their inherent attributes such as mobility, flexibility, and adaptive altitude, UAVs admit several key potential applications in wireless systems. On the one hand, UAVs can be used as aerial base stations to enhance coverage, capacity, reliability, and energy efficiency of wireless networks. On the other hand, UAVs can operate as flying mobile terminals within a cellular network. Such cellular-connected UAVs can enable several applications ranging from real-time video streaming to item delivery. In this paper, a comprehensive tutorial on the potential benefits and applications of UAVs in wireless communications is presented. Moreover, the important challenges and the fundamental tradeoffs in UAV-enabled wireless networks are thoroughly investigated. In particular, the key UAV challenges such as 3D deployment, performance analysis, channel modeling, and energy efficiency are explored along with representative results. Then, open problems and potential research directions pertaining to UAV communications are introduced. Finally, various analytical frameworks and mathematical tools, such as optimization theory, machine learning, stochastic geometry, transport theory, and game theory are described. The use of such tools for addressing unique UAV problems is also presented. In a nutshell, this tutorial provides key guidelines on how to analyze, optimize, and design UAV-based wireless communication systems.

1,395 citations

Journal ArticleDOI
TL;DR: This paper provides a tutorial overview of IRS-aided wireless communications, and elaborate its reflection and channel models, hardware architecture and practical constraints, as well as various appealing applications in wireless networks.
Abstract: Intelligent reflecting surface (IRS) is an enabling technology to engineer the radio signal propagation in wireless networks. By smartly tuning the signal reflection via a large number of low-cost passive reflecting elements, IRS is capable of dynamically altering wireless channels to enhance the communication performance. It is thus expected that the new IRS-aided hybrid wireless network comprising both active and passive components will be highly promising to achieve a sustainable capacity growth cost-effectively in the future. Despite its great potential, IRS faces new challenges to be efficiently integrated into wireless networks, such as reflection optimization, channel estimation, and deployment from communication design perspectives. In this paper, we provide a tutorial overview of IRS-aided wireless communications to address the above issues, and elaborate its reflection and channel models, hardware architecture and practical constraints, as well as various appealing applications in wireless networks. Moreover, we highlight important directions worthy of further investigation in future work.

1,325 citations

Journal ArticleDOI
TL;DR: Reconfigurable intelligent surfaces (RISs) can be realized in different ways, which include (i) large arrays of inexpensive antennas that are usually spaced half of the wavelength apart; and (ii) metamaterial-based planar or conformal large surfaces whose scattering elements have sizes and inter-distances much smaller than the wavelength.
Abstract: Reconfigurable intelligent surfaces (RISs) are an emerging transmission technology for application to wireless communications. RISs can be realized in different ways, which include (i) large arrays of inexpensive antennas that are usually spaced half of the wavelength apart; and (ii) metamaterial-based planar or conformal large surfaces whose scattering elements have sizes and inter-distances much smaller than the wavelength. Compared with other transmission technologies, e.g., phased arrays, multi-antenna transmitters, and relays, RISs require the largest number of scattering elements, but each of them needs to be backed by the fewest and least costly components. Also, no power amplifiers are usually needed. For these reasons, RISs constitute a promising software-defined architecture that can be realized at reduced cost, size, weight, and power (C-SWaP design), and are regarded as an enabling technology for realizing the emerging concept of smart radio environments (SREs). In this paper, we (i) introduce the emerging research field of RIS-empowered SREs; (ii) overview the most suitable applications of RISs in wireless networks; (iii) present an electromagnetic-based communication-theoretic framework for analyzing and optimizing metamaterial-based RISs; (iv) provide a comprehensive overview of the current state of research; and (v) discuss the most important research issues to tackle. Owing to the interdisciplinary essence of RIS-empowered SREs, finally, we put forth the need of reconciling and reuniting C. E. Shannon’s mathematical theory of communication with G. Green’s and J. C. Maxwell’s mathematical theories of electromagnetism for appropriately modeling, analyzing, optimizing, and deploying future wireless networks empowered by RISs.

1,158 citations

Posted Content
TL;DR: This tutorial provides key guidelines on how to analyze, optimize, and design UAV-based wireless communication systems on the basis of 3D deployment, performance analysis, channel modeling, and energy efficiency.
Abstract: The use of flying platforms such as unmanned aerial vehicles (UAVs), popularly known as drones, is rapidly growing. In particular, with their inherent attributes such as mobility, flexibility, and adaptive altitude, UAVs admit several key potential applications in wireless systems. On the one hand, UAVs can be used as aerial base stations to enhance coverage, capacity, reliability, and energy efficiency of wireless networks. On the other hand, UAVs can operate as flying mobile terminals within a cellular network. Such cellular-connected UAVs can enable several applications ranging from real-time video streaming to item delivery. In this paper, a comprehensive tutorial on the potential benefits and applications of UAVs in wireless communications is presented. Moreover, the important challenges and the fundamental tradeoffs in UAV-enabled wireless networks are thoroughly investigated. In particular, the key UAV challenges such as three-dimensional deployment, performance analysis, channel modeling, and energy efficiency are explored along with representative results. Then, open problems and potential research directions pertaining to UAV communications are introduced. Finally, various analytical frameworks and mathematical tools such as optimization theory, machine learning, stochastic geometry, transport theory, and game theory are described. The use of such tools for addressing unique UAV problems is also presented. In a nutshell, this tutorial provides key guidelines on how to analyze, optimize, and design UAV-based wireless communication systems.

1,071 citations

Journal ArticleDOI
TL;DR: A comprehensive survey of mmWave communications for future mobile networks (5G and beyond) is presented, including an overview of the solution for multiple access and backhauling, followed by the analysis of coverage and connectivity.
Abstract: Millimeter wave (mmWave) communications have recently attracted large research interest, since the huge available bandwidth can potentially lead to the rates of multiple gigabit per second per user Though mmWave can be readily used in stationary scenarios, such as indoor hotspots or backhaul, it is challenging to use mmWave in mobile networks, where the transmitting/receiving nodes may be moving, channels may have a complicated structure, and the coordination among multiple nodes is difficult To fully exploit the high potential rates of mmWave in mobile networks, lots of technical problems must be addressed This paper presents a comprehensive survey of mmWave communications for future mobile networks (5G and beyond) We first summarize the recent channel measurement campaigns and modeling results Then, we discuss in detail recent progresses in multiple input multiple output transceiver design for mmWave communications After that, we provide an overview of the solution for multiple access and backhauling, followed by the analysis of coverage and connectivity Finally, the progresses in the standardization and deployment of mmWave for mobile networks are discussed

887 citations