scispace - formally typeset
Search or ask a question
Author

Zhen Yue

Bio: Zhen Yue is an academic researcher from Beijing Genomics Institute. The author has contributed to research in topics: Genome & Gene. The author has an hindex of 12, co-authored 18 publications receiving 2989 citations.

Papers
More filters
Journal ArticleDOI
25 Apr 2018-Nature
TL;DR: Analyses of genetic variation and population structure based on over 3,000 cultivated rice (Oryza sativa) genomes reveal subpopulations that correlate with geographic location and patterns of introgression consistent with multiple rice domestication events.
Abstract: Here we analyse genetic variation, population structure and diversity among 3,010 diverse Asian cultivated rice (Oryza sativa L.) genomes from the 3,000 Rice Genomes Project. Our results are consistent with the five major groups previously recognized, but also suggest several unreported subpopulations that correlate with geographic location. We identified 29 million single nucleotide polymorphisms, 2.4 million small indels and over 90,000 structural variations that contribute to within- and between-population variation. Using pan-genome analyses, we identified more than 10,000 novel full-length protein-coding genes and a high number of presence-absence variations. The complex patterns of introgression observed in domestication genes are consistent with multiple independent rice domestication events. The public availability of data from the 3,000 Rice Genomes Project provides a resource for rice genomics research and breeding.

885 citations

Journal ArticleDOI
TL;DR: A draft genome sequence of Brassica oleracea is described, comparing it with that of its sister species B. rapa to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks.
Abstract: Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear Brassica is an ideal model to increase knowledge of polyploid evolution Here we describe a draft genome sequence of Brassica oleracea, comparing it with that of its sister species B rapa to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks, asymmetrical amplification of transposable elements, differential gene co-retention for specific pathways and variation in gene expression, including alternative splicing, among a large number of paralogous and orthologous genes Genes related to the production of anticancer phytochemicals and morphological variations illustrate consequences of genome duplication and gene divergence, imparting biochemical and morphological variation to B oleracea This study provides insights into Brassica genome evolution and will underpin research into the many important crops in this genus

884 citations

Journal ArticleDOI
TL;DR: A draft genome anchored onto nine chromosomes and annotated 38,801 genes was produced and key chromosome reshuffling events were detected through collinearity identification between foxtail millet, rice and sorghum.
Abstract: Completion of genome sequences for the diploid Setaria italica reveals features of C4 photosynthesis that could enable improvement of the polyploid biofuel crop switchgrass (Panicum virgatum). The genetic basis of biotechnologically relevant traits, including drought tolerance, photosynthetic efficiency and flowering control, is also highlighted. Foxtail millet (Setaria italica), a member of the Poaceae grass family, is an important food and fodder crop in arid regions and has potential for use as a C4 biofuel. It is a model system for other biofuel grasses, including switchgrass and pearl millet. We produced a draft genome (∼423 Mb) anchored onto nine chromosomes and annotated 38,801 genes. Key chromosome reshuffling events were detected through collinearity identification between foxtail millet, rice and sorghum including two reshuffling events fusing rice chromosomes 7 and 9, 3 and 10 to foxtail millet chromosomes 2 and 9, respectively, that occurred after the divergence of foxtail millet and rice, and a single reshuffling event fusing rice chromosome 5 and 12 to foxtail millet chromosome 3 that occurred after the divergence of millet and sorghum. Rearrangements in the C4 photosynthesis pathway were also identified.

553 citations

Journal ArticleDOI
TL;DR: The first whole-genome sequence of a basal lepidopteran species, Plutella xylostella, is reported, which contains 18,071 protein-coding and 1,412 unique genes with an expansion of gene families associated with perception and the detoxification of plant defense compounds.
Abstract: How an insect evolves to become a successful herbivore is of profound biological and practical importance. Herbivores are often adapted to feed on a specific group of evolutionarily and biochemically related host plants, but the genetic and molecular bases for adaptation to plant defense compounds remain poorly understood. We report the first whole-genome sequence of a basal lepidopteran species, Plutella xylostella, which contains 18,071 protein-coding and 1,412 unique genes with an expansion of gene families associated with perception and the detoxification of plant defense compounds. A recent expansion of retrotransposons near detoxification-related genes and a wider system used in the metabolism of plant defense compounds are shown to also be involved in the development of insecticide resistance. This work shows the genetic and molecular bases for the evolutionary success of this worldwide herbivore and offers wider insights into insect adaptation to plant feeding, as well as opening avenues for more sustainable pest management.

455 citations

Journal ArticleDOI
TL;DR: The genome sequence of the desert poplar, Populus euphratica, which exhibits high tolerance to salt stress is reported, which provides an important background for understanding tree adaptation to salt Stress and facilitating the genetic improvement of cultivated poplars for saline soils.
Abstract: Despite the high economic and ecological importance of forests, our knowledge of the genomic evolution of trees under salt stress remains very limited. Here we report the genome sequence of the desert poplar, Populus euphratica, which exhibits high tolerance to salt stress. Its genome is very similar and collinear to that of the closely related mesophytic congener, P. trichocarpa. However, we find that several gene families likely to be involved in tolerance to salt stress contain significantly more gene copies within the P. euphratica lineage. Furthermore, genes showing evidence of positive selection are significantly enriched in functional categories related to salt stress. Some of these genes, and others within the same categories, are significantly upregulated under salt stress relative to their expression in another salt-sensitive poplar. Our results provide an important background for understanding tree adaptation to salt stress and facilitating the genetic improvement of cultivated poplars for saline soils.

241 citations


Cited by
More filters
Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

Journal ArticleDOI
Boulos Chalhoub1, Shengyi Liu2, Isobel A. P. Parkin3, Haibao Tang4, Haibao Tang5, Xiyin Wang6, Julien Chiquet1, Harry Belcram1, Chaobo Tong2, Birgit Samans7, Margot Correa8, Corinne Da Silva8, Jérémy Just1, Cyril Falentin9, Chu Shin Koh10, Isabelle Le Clainche1, Maria Bernard8, Pascal Bento8, Benjamin Noel8, Karine Labadie8, Adriana Alberti8, Mathieu Charles9, Dominique Arnaud1, Hui Guo6, Christian Daviaud, Salman Alamery11, Kamel Jabbari12, Kamel Jabbari1, Meixia Zhao13, Patrick P. Edger14, Houda Chelaifa1, David C. Tack15, Gilles Lassalle9, Imen Mestiri1, Nicolas Schnel9, Marie-Christine Le Paslier9, Guangyi Fan, Victor Renault16, Philippe E. Bayer11, Agnieszka A. Golicz11, Sahana Manoli11, Tae-Ho Lee6, Vinh Ha Dinh Thi1, Smahane Chalabi1, Qiong Hu2, Chuchuan Fan17, Reece Tollenaere11, Yunhai Lu1, Christophe Battail8, Jinxiong Shen17, Christine Sidebottom10, Xinfa Wang2, Aurélie Canaguier1, Aurélie Chauveau9, Aurélie Bérard9, G. Deniot9, Mei Guan18, Zhongsong Liu18, Fengming Sun, Yong Pyo Lim19, Eric Lyons20, Christopher D. Town5, Ian Bancroft21, Xiaowu Wang, Jinling Meng17, Jianxin Ma13, J. Chris Pires22, Graham J.W. King23, Dominique Brunel9, Régine Delourme9, Michel Renard9, Jean-Marc Aury8, Keith L. Adams15, Jacqueline Batley24, Jacqueline Batley11, Rod J. Snowdon7, Jörg Tost, David Edwards24, David Edwards11, Yongming Zhou17, Wei Hua2, Andrew G. Sharpe10, Andrew H. Paterson6, Chunyun Guan18, Patrick Wincker8, Patrick Wincker25, Patrick Wincker1 
22 Aug 2014-Science
TL;DR: The polyploid genome of Brassica napus, which originated from a recent combination of two distinct genomes approximately 7500 years ago and gave rise to the crops of rape oilseed, is sequenced.
Abstract: Oilseed rape (Brassica napus L.) was formed ~7500 years ago by hybridization between B. rapa and B. oleracea, followed by chromosome doubling, a process known as allopolyploidy. Together with more ancient polyploidizations, this conferred an aggregate 72× genome multiplication since the origin of angiosperms and high gene content. We examined the B. napus genome and the consequences of its recent duplication. The constituent An and Cn subgenomes are engaged in subtle structural, functional, and epigenetic cross-talk, with abundant homeologous exchanges. Incipient gene loss and expression divergence have begun. Selection in B. napus oilseed types has accelerated the loss of glucosinolate genes, while preserving expansion of oil biosynthesis genes. These processes provide insights into allopolyploid evolution and its relationship with crop domestication and improvement.

1,743 citations

Journal ArticleDOI
Erich D. Jarvis1, Siavash Mirarab2, Andre J. Aberer3, Bo Li4, Bo Li5, Bo Li6, Peter Houde7, Cai Li6, Cai Li5, Simon Y. W. Ho8, Brant C. Faircloth9, Benoit Nabholz, Jason T. Howard1, Alexander Suh10, Claudia C. Weber10, Rute R. da Fonseca11, Jianwen Li, Fang Zhang Zhang, Hui Li, Long Zhou, Nitish Narula12, Nitish Narula7, Liang Liu13, Ganesh Ganapathy1, Bastien Boussau, Shamsuzzoha Bayzid2, Volodymyr Zavidovych1, Sankar Subramanian14, Toni Gabaldón15, Salvador Capella-Gutierrez, Jaime Huerta-Cepas, Bhanu Rekepalli16, Bhanu Rekepalli17, Kasper Munch18, Mikkel H. Schierup18, Bent E. K. Lindow11, Wesley C. Warren19, David A. Ray, Richard E. Green20, Michael William Bruford21, Xiangjiang Zhan22, Xiangjiang Zhan21, Andrew Dixon, Shengbin Li4, Ning Li23, Yinhua Huang23, Elizabeth P. Derryberry24, Elizabeth P. Derryberry25, Mads F. Bertelsen26, Frederick H. Sheldon24, Robb T. Brumfield24, Claudio V. Mello27, Claudio V. Mello28, Peter V. Lovell28, Morgan Wirthlin28, Maria Paula Cruz Schneider27, Francisco Prosdocimi27, José Alfredo Samaniego11, Amhed Missael Vargas Velazquez11, Alonzo Alfaro-Núñez11, Paula F. Campos11, Bent O. Petersen29, Thomas Sicheritz-Pontén29, An Pas, Thomas L. Bailey, R. Paul Scofield30, Michael Bunce31, David M. Lambert14, Qi Zhou, Polina L. Perelman32, Amy C. Driskell33, Beth Shapiro20, Zijun Xiong, Yongli Zeng, Shiping Liu, Zhenyu Li, Binghang Liu, Kui Wu, Jin Xiao, Xiong Yinqi, Quiemei Zheng, Yong Zhang, Huanming Yang, Jian Wang, Linnéa Smeds10, Frank E. Rheindt34, Michael J. Braun35, Jon Fjeldså11, Ludovic Orlando11, F. Keith Barker6, Knud A. Jønsson6, Warren E. Johnson33, Klaus-Peter Koepfli33, Stephen J. O'Brien36, David Haussler, Oliver A. Ryder, Carsten Rahbek6, Eske Willerslev11, Gary R. Graves33, Gary R. Graves6, Travis C. Glenn13, John E. McCormack37, Dave Burt38, Hans Ellegren10, Per Alström, Scott V. Edwards39, Alexandros Stamatakis3, David P. Mindell40, Joel Cracraft6, Edward L. Braun41, Tandy Warnow42, Tandy Warnow2, Wang Jun, M. Thomas P. Gilbert6, M. Thomas P. Gilbert31, Guojie Zhang5, Guojie Zhang11 
12 Dec 2014-Science
TL;DR: A genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves recovered a highly resolved tree that confirms previously controversial sister or close relationships and identifies the first divergence in Neoaves, two groups the authors named Passerea and Columbea.
Abstract: To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species. Among Passerea, we infer the common ancestor of core landbirds to have been an apex predator and confirm independent gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved challenging to resolve, which was best explained by massive protein-coding sequence convergence and high levels of incomplete lineage sorting that occurred during a rapid radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago.

1,624 citations

10 Dec 2007
TL;DR: The experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.
Abstract: EVidenceModeler (EVM) is presented as an automated eukaryotic gene structure annotation tool that reports eukaryotic gene structures as a weighted consensus of all available evidence. EVM, when combined with the Program to Assemble Spliced Alignments (PASA), yields a comprehensive, configurable annotation system that predicts protein-coding genes and alternatively spliced isoforms. Our experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.

1,528 citations