scispace - formally typeset
Search or ask a question
Author

Zhen Zhang

Bio: Zhen Zhang is an academic researcher from Anhui Agricultural University. The author has contributed to research in topics: Invasive species & Biomass (ecology). The author has an hindex of 2, co-authored 2 publications receiving 131 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Elevated temperature and CO2 enrichment increased performance of invasive alien plants more strongly than was the case for native plants, and increases in the four other components of global environmental change considered, particularly global warming and atmosphericCO2 enrichment, may further increase the spread of invasive plants in the future.
Abstract: Invasive alien plant species threaten native biodiversity, disrupt ecosystem functions and can cause large economic damage. Plant invasions have been predicted to further increase under ongoing global environmental change. Numerous case studies have compared the performance of invasive and native plant species in response to global environmental change components (i.e. changes in mean levels of precipitation, temperature, atmospheric CO2 concentration or nitrogen deposition). Individually, these studies usually involve low numbers of species and therefore the results cannot be generalized. Therefore, we performed a phylogenetically controlled meta-analysis to assess whether there is a general pattern of differences in invasive and native plant performance under each component of global environmental change. We compiled a database of studies that reported performance measures for 74 invasive alien plant species and 117 native plant species in response to one of the above-mentioned global environmental change components. We found that elevated temperature and CO2 enrichment increased the performance of invasive alien plants more strongly than was the case for native plants. Invasive alien plants tended to also have a slightly stronger positive response to increased N deposition and increased precipitation than native plants, but these differences were not significant (N deposition: P = 0.051; increased precipitation: P = 0.679). Invasive alien plants tended to have a slightly stronger negative response to decreased precipitation than native plants, although this difference was also not significant (P = 0.060). So while drought could potentially reduce plant invasion, increases in the four other components of global environmental change considered, particularly global warming and atmospheric CO2 enrichment, may further increase the spread of invasive plants in the future.

186 citations

Journal ArticleDOI
TL;DR: Testing whether high water availability, nitrogen (N) enrichment and their interaction promote performance of three invasive alien plants when competing with a native Chinese grassland species indicates that future changes in water availability and N enrichment may affect the invasion success of different alien species differently.
Abstract: Plant invasions are a major component of global change, but they may be affected by other global change components. Here we used a mesocosm-pot experiment to test whether high water availability, nitrogen (N) enrichment and their interaction promote performance of three invasive alien plants (Lepidium virginicum, Lolium perenne and Medicago sativa) when competing with a native Chinese grassland species (Agropyron cristatum). Single plants of the three invasive and the one native species were grown in the center of pots with a matrix of the native A. cristatum under low, intermediate or high water availability and low or high N availability. The invasive species L. virginicum and M. sativa grew larger, and produced a higher biomass relative to competitors than the native species A. cristatum did. Increasing water availability promoted biomass production of all species, but water availability did not change the biomass of the central plants relative to that of the competitors. Nitrogen addition also increased biomass production of all species, and it increased the biomass of the central plants more so than that of the competitors. The positive effect of N addition on the biomass of the central plants relative to that of the competitors increased with increasing water availability. However, compared to central plants of the native species, the positive effect of N addition on the relative biomass of L. virginicum decreased when water availability increased. These interactions indicate that future changes in water availability and N enrichment may affect the invasion success of different alien species differently.

24 citations

Journal ArticleDOI
TL;DR: In this paper , the authors explored whether invasive and native species differ in their responses to varying P availability and forms and found that invasive species were not more promiscuous than the native species, they took great advantage of the organic P forms.
Abstract: PREMISE Many studies have assessed the various responses of alien plants to changes in overall nutrient or different nitrogen (N) availabilities. However, in natural soils, nutrients are present as different elements (e.g., N and phosphorus [P]) and forms (e.g., inorganic and organic). Few studies have explored whether invasive and native species differ in their responses to varying P availability and forms. METHODS We grew five taxonomically related pairs of common herbaceous, invasive and native species alone or in competition under six different conditions of P availability or forms and assessed their growth performance. RESULTS Invasive species overall did not produce more biomass than native species did in the various P conditions. However, the biomass response to organic forms of P was, relative to the response to inorganic forms of P, stronger for the invasive species than that for the native species and agreed with invasive species mainly allocating biomass to the root system under organic P conditions. CONCLUSIONS While invasive species were not more promiscuous than the native species, they took great advantage of the organic P forms. Therefore, the invasion risk of alien species may increase in habitats with more organic P sources.

3 citations

Journal ArticleDOI
01 Oct 2022
TL;DR: In this paper , qRT-PCR analysis showed that consecutive monoculture regimes significantly increased the content of pathogenic Broad bean wilt virus 2, Turnip mosaic virus, and Cucumber mosaic virus in Radix pseudostellariae roots at different growth stages.
Abstract: Viruses interact with nearly all organisms on Earth, thereby influencing biogeochemical cycles, agriculture, and health. However, less is known about the composition and function of viruses in agricultural rhizosphere soils, especially under consecutive monoculture regimes. Our qRT-PCR analysis in this study showed that consecutive monoculture regimes significantly increased the content of pathogenic Broad bean wilt virus 2, Turnip mosaic virus, and Cucumber mosaic virus in Radix pseudostellariae roots at different growth stages. Metatranscriptome analysis indicated that consecutive monoculture altered the rhizosphere soil viral community structure, composition, and habitat niche breadth and accumulated pathogenic plant viruses in the rhizosphere soil. In addition, 54 unique carbohydrate metabolism-related open reading frames (ORFs) were detected as encoding carbohydrate-active enzymes (CAZymes) in viromes, including glycoside hydrolases and glycosyl-transferase activities. Our results also showed that the soil viral richness and the Shannon index displayed a negative correlation with bacterial abundance and a positive correlation with fungal abundance. Soil pH, total nitrogen, available phosphorus, and phenolic acids were the key abiotic drivers of the soil viral community composition. Our study provides new insights into how consecutive monoculture regimes shape the soil viral community composition and further influence plant viral diseases. • Consecutive monoculture altered the rhizosphere soil viral community structure and composition. • The pathogenic plant viruses accumulated in the plant and rhizosphere soil under consecutive monoculture. • Soil viral communities were driven by the soil pH, total nitrogen, available phosphorus and phenolic acids.

3 citations

Journal ArticleDOI
TL;DR: Redundancy analysis showed that electrical conductivity (EC) and total phosphorus (TP) were the main factors changing the bacterial communities, and available phosphorus (AP), organic matter, EC, and pH was the main factor changing the fungal communities.
Abstract: Acid rain not only has serious harm to the environment, but also has the same threat to plants, but the invasive plant Alternanthera philoxeroides still grows well compared to the native plant Alternanthera sessilis under acid rain stress. However, the underlying mechanism of resistance to the acid rain environment in invasive Alternanthera philoxeroides remains unclear. In the current study, we comparatively analyzed the plant physiological characteristics, soil physicochemical properties, and rhizosphere microbial communities of invasive A. philoxeroides and native A. sessilis under different pH condition. The simulated acid rain had a significant inhibitory effect on the morphological and physiological traits of A. philoxeroides and A. sessilis and reduced the soil nutrient content. However, A. philoxeroides was more tolerant of acid rain. Compared with CK, simulated acid rain treatment at pH 2.5 significantly increased the Chao1, ACE, and Shannon indexes of A. philoxeroides microorganisms. Under simulated acid rain treatment at pH 2.5, the fungal flora Chao1, ACE and Shannon index were significantly higher than those of CK by 14.5%, 12.4%, and 30.4%, respectively. The dominant bacterial phyla of soil bacteria were Proteobacteria, Actinobacteria, Bacteroidota, Actinobacteria, Firmicutes, Myxococcota, Chloroflexi, Patescibacteria, Gemmatimonadota, Verrucomicrobiota, and Armatimonadota. The dominant fungi were Ascomycota, Basidiomycota, Rozellomycota, and Olpidiomycota. The bacterial and fungal diversity and structure of A. philoxeroides and A. sessilis showed the greatest difference between the pH 2.5 treatment and CK. Redundancy analysis showed that electrical conductivity (EC) and total phosphorus (TP) were the main factors changing the bacterial communities, and available phosphorus (AP), organic matter (OM), EC, and pH were the main factors changing the fungal communities. This study contributes to the microbial community structure of the invasive plant A. philoxeroides and provides a theoretical basis for studying the invasion mechanism of invasive plants under acid rain.

2 citations


Cited by
More filters
01 Apr 2016
TL;DR: The evidence suggests that of the various proposed dates two do appear to conform to the criteria to mark the beginning of the Anthropocene: 1610 and 1964.
Abstract: Time is divided by geologists according to marked shifts in Earth's state. Recent global environmental changes suggest that Earth may have entered a new human-dominated geological epoch, the Anthropocene. Here we review the historical genesis of the idea and assess anthropogenic signatures in the geological record against the formal requirements for the recognition of a new epoch. The evidence suggests that of the various proposed dates two do appear to conform to the criteria to mark the beginning of the Anthropocene: 1610 and 1964. The formal establishment of an Anthropocene Epoch would mark a fundamental change in the relationship between humans and the Earth system.

1,173 citations

Journal ArticleDOI
TL;DR: An overview of the historical, contemporary and potential future roles of ornamental horticulture in plant invasions is provided, showing that currently at least 75% and 93% of the global naturalised alien flora is grown in domestic and botanical gardens, respectively.
Abstract: The number of alien plants escaping from cultivation into native ecosystems is increasing steadily. We provide an overview of the historical, contemporary and potential future roles of ornamental horticulture in plant invasions. We show that currently at least 75% and 93% of the global naturalised alien flora is grown in domestic and botanical gardens, respectively. Species grown in gardens also have a larger naturalised range than those that are not. After the Middle Ages, particularly in the 18th and 19th centuries, a global trade network in plants emerged. Since then, cultivated alien species also started to appear in the wild more frequently than non-cultivated aliens globally, particularly during the 19th century. Horticulture still plays a prominent role in current plant introduction, and the monetary value of live-plant imports in different parts of the world is steadily increasing. Historically, botanical gardens – an important component of horticulture – played a major role in displaying, cultivating and distributing new plant discoveries. While the role of botanical gardens in the horticultural supply chain has declined, they are still a significant link, with one-third of institutions involved in retail-plant sales and horticultural research. However, botanical gardens have also become more dependent on commercial nurseries as plant sources, particularly in North America. Plants selected for ornamental purposes are not a random selection of the global flora, and some of the plant characteristics promoted through horticulture, such as fast growth, also promote invasion. Efforts to breed non-invasive plant cultivars are still rare. Socio-economical, technological, and environmental changes will lead to novel patterns of plant introductions and invasion opportunities for the species that are already cultivated. We describe the role that horticulture could play in mediating these changes. We identify current research challenges, and call for more research efforts on the past and current role of horticulture in plant invasions. This is required to develop science-based regulatory frameworks to prevent further plant invasions.

222 citations

Journal ArticleDOI
TL;DR: Differences in the ability of clonal integration could potentially explain the invasion success of alien clonal plants in areas where resources are heterogeneously distributed and thus confers invasives a competitive advantage.
Abstract: What confers invasive alien plants a competitive advantage over native plants remains open to debate. Many of the world's worst invasive alien plants are clonal and able to share resources within clones (clonal integration), particularly in heterogeneous environments. Here, we tested the hypothesis that clonal integration benefits invasive clonal plants more than natives and thus confers invasives a competitive advantage. We selected five congeneric and naturally co-occurring pairs of invasive alien and native clonal plants in China, and grew pairs of connected and disconnected ramets under heterogeneous light, soil nutrient and water conditions that are commonly encountered by alien plants during their invasion into new areas. Clonal integration increased biomass of all plants in all three heterogeneous resource environments. However, invasive plants benefited more from clonal integration than natives. Consequently, invasive plants produced more biomass than natives. Our results indicate that clonal integration may confer invasive alien clonal plants a competitive advantage over natives. Therefore, differences in the ability of clonal integration could potentially explain, at least partly, the invasion success of alien clonal plants in areas where resources are heterogeneously distributed.

124 citations

Journal ArticleDOI
TL;DR: A large proportion of European alpine plants are able to spread upslope faster than current climate velocities as discussed by the authors, indicating that invasive species tend to be particularly effective dispersers, making them an additional pressure on the vulnerable native flora.
Abstract: A large proportion of European alpine plants are able to spread upslope faster than current climate velocities. Nevertheless, invasive species tend to be particularly effective dispersers, making them an additional pressure on the vulnerable native flora. Climate change is expected to trigger an upward expansion of plants in mountain regions1,2 and, although there is strong evidence that many native species have already shifted their distributions to higher elevations1,3,4,5,6, little is known regarding how fast non-native species might respond to climate change. By analysing 131,394 occurrence records of 1,334 plant species collected over 20 years in the European Alps, we found that non-natives are spreading upwards approximately twice as fast as natives. Whereas the spread of natives was enhanced by traits favouring longer dispersal distances, this was not the case for non-natives. This was due to the non-native species pool already being strongly biased towards species that had traits facilitating spread. A large proportion of native and non-native species seemed to be able to spread upwards faster than the current velocity of climate change. In particular, long-distance dispersal events and proximity to roads proved to be key drivers for the observed rapid spread. Our findings highlight that invasions by non-native species into native alpine communities are a potentially significant additional pressure on these vulnerable ecosystems that are already likely to suffer dramatic vegetation changes with ongoing warming and increasing human activity in mountain regions.

89 citations