scispace - formally typeset
Search or ask a question
Author

Zhendong Li

Bio: Zhendong Li is an academic researcher from Beijing Normal University. The author has contributed to research in topics: Density matrix renormalization group & Density functional theory. The author has an hindex of 28, co-authored 62 publications receiving 2447 citations. Previous affiliations of Zhendong Li include Molecular Sciences Institute & Peking University.


Papers
More filters
Journal ArticleDOI
TL;DR: The capabilities and design philosophy of the current version of the PySCF package are document, which is as efficient as the best existing C or Fortran‐based quantum chemistry programs.
Abstract: Python-based simulations of chemistry framework (PySCF) is a general-purpose electronic structure platform designed from the ground up to emphasize code simplicity, so as to facilitate new method development and enable flexible computational workflows. The package provides a wide range of tools to support simulations of finite-size systems, extended systems with periodic boundary conditions, low-dimensional periodic systems, and custom Hamiltonians, using mean-field and post-mean-field methods with standard Gaussian basis functions. To ensure ease of extensibility, PySCF uses the Python language to implement almost all of its features, while computationally critical paths are implemented with heavily optimized C routines. Using this combined Python/C implementation, the package is as efficient as the best existing C or Fortran-based quantum chemistry programs. In this paper, we document the capabilities and design philosophy of the current version of the PySCF package. WIREs Comput Mol Sci 2018, 8:e1340. doi: 10.1002/wcms.1340 This article is categorized under: Structure and Mechanism > Computational Materials Science Electronic Structure Theory > Ab Initio Electronic Structure Methods Software > Quantum Chemistry

1,042 citations

Journal ArticleDOI
TL;DR: PySCF as mentioned in this paper is a Python-based general-purpose electronic structure platform that supports first-principles simulations of molecules and solids as well as accelerates the development of new methodology and complex computational workflows.
Abstract: PySCF is a Python-based general-purpose electronic structure platform that supports first-principles simulations of molecules and solids as well as accelerates the development of new methodology and complex computational workflows. This paper explains the design and philosophy behind PySCF that enables it to meet these twin objectives. With several case studies, we show how users can easily implement their own methods using PySCF as a development environment. We then summarize the capabilities of PySCF for molecular and solid-state simulations. Finally, we describe the growing ecosystem of projects that use PySCF across the domains of quantum chemistry, materials science, machine learning, and quantum information science.

374 citations

Journal ArticleDOI
TL;DR: In this paper, a matrix product operator/matrix product state algebra within a pure renormalized operator-based matrix renormalization group (DMRG) code is described.
Abstract: Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

146 citations

Journal ArticleDOI
TL;DR: The sf-X2C+so-DKH3 Hamiltonian, together with appropriately constructed generally contracted basis sets, is most promising for accounting for relativistic effects in two steps, first spin-free and then spin-dependent, with the latter applied either perturbatively or variationally.
Abstract: The separation of the spin-free and spin-dependent terms of a given relativistic Hamiltonian is usually facilitated by the Dirac identity. However, this is no longer possible for the recently developed exact two-component relativistic Hamiltonians derived from the matrix representation of the Dirac equation in a kinetically balanced basis. This stems from the fact that the decoupling matrix does not have an explicit form. To resolve this formal difficulty, we first define the spin-dependent term as the difference between a two-component Hamiltonian corresponding to the full Dirac equation and its one-component counterpart corresponding to the spin-free Dirac equation. The series expansion of the spin-dependent term is then developed in two different ways. One is in the spirit of the Douglas-Kroll-Hess (DKH) transformation and the other is based on the perturbative expansion of a two-component Hamiltonian of fixed structure, either the two-step Barysz-Sadlej-Snijders (BSS) or the one-step exact two-component (X2C) form. The algorithms for constructing arbitrary order terms are proposed for both schemes and their convergence patterns are assessed numerically. Truncating the expansions to finite orders leads naturally to a sequence of novel spin-dependent Hamiltonians. In particular, the order-by-order distinctions among the DKH, BSS, and X2C approaches can nicely be revealed. The well-known Pauli, zeroth-order regular approximation, and DKH1 spin-dependent Hamiltonians can also be recovered naturally by appropriately approximating the decoupling and renormalization matrices. On the practical side, the sf-X2C+so-DKH3 Hamiltonian, together with appropriately constructed generally contracted basis sets, is most promising for accounting for relativistic effects in two steps, first spin-free and then spin-dependent, with the latter applied either perturbatively or variationally.

120 citations

Journal ArticleDOI
TL;DR: A tensor-coupling scheme that invokes all the components of a reference multiplet rather than increases the excitation ranks is proposed, and it is shown that spin-contaminated spin-flip configuration interaction approaches can easily be spin-adapted via the Tensor-Coupled scheme.
Abstract: The spin-adaptation of single-reference quantum chemical methods for excited states of open-shell systems has been nontrivial. The primary reason is that the configuration space, generated by a truncated rank of excitations from only one component of a reference multiplet, is spin-incomplete. Those "missing" configurations are of higher ranks and can, in principle, be recaptured by a particular class of excitation operators. However, the resulting formalisms are then quite involved and there are situations [e.g., time-dependent density functional theory (TD-DFT) under the adiabatic approximation] that prevent one from doing so. To solve this issue, we propose here a tensor-coupling scheme that invokes all the components of a reference multiplet (i.e., a tensor reference) rather than increases the excitation ranks. A minimal spin-adapted n-tuply excited configuration space can readily be constructed by tensor products between the n-tuple tensor excitation operators and the chosen tensor reference. Further combined with the tensor equation-of-motion formalism, very compact expressions for excitation energies can be obtained. As a first application of this general idea, a spin-adapted open-shell random phase approximation is first developed. The so-called "translation rule" is then adopted to formulate a spin-adapted, restricted open-shell Kohn-Sham (ROKS)-based TD-DFT (ROKS-TD-DFT). Here, a particular symmetry structure has to be imposed on the exchange-correlation kernel. While the standard ROKS-TD-DFT can access only excited states due to singlet-coupled single excitations, i.e., only some of the singly excited states of the same spin (S(i)) as the reference, the new scheme can capture all the excited states of spin S(i)-1, S(i), or S(i)+1 due to both singlet- and triplet-coupled single excitations. The actual implementation and computation are very much like the (spin-contaminated) unrestricted Kohn-Sham-based TD-DFT. It is also shown that spin-contaminated spin-flip configuration interaction approaches can easily be spin-adapted via the tensor-coupling scheme.

83 citations


Cited by
More filters
01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations

Journal ArticleDOI
TL;DR: This critical review focuses on the design principles and the recent development of phosphorescent chemosensors for metal cations, anions, pH, oxygen, volatile organic compounds and biomolecules based on some heavy-metal complexes.
Abstract: Recently, the use of phosphorescent heavy-metal complexes as chemosensors has attracted increasing interest due to their advantageous photophysical properties. This critical review focuses on the design principles and the recent development of phosphorescent chemosensors for metal cations, anions, pH, oxygen, volatile organic compounds and biomolecules based on some heavy-metal complexes (such as Pt(II)-, Ru(II)-, Re(I)-, Ir(III)-, Cu(I)-, Au(I)- and Os(II)-based complexes), in which the variation in phosphorescence signals induced by the interaction between heavy-metal complexes and analytes is utilized (217 references).

1,089 citations

Journal ArticleDOI
TL;DR: This review presents strategies employed to construct quantum algorithms for quantum chemistry, with the goal that quantum computers will eventually answer presently inaccessible questions, for example, in transition metal catalysis or important biochemical reactions.
Abstract: One of the most promising suggested applications of quantum computing is solving classically intractable chemistry problems. This may help to answer unresolved questions about phenomena such as high temperature superconductivity, solid-state physics, transition metal catalysis, and certain biochemical reactions. In turn, this increased understanding may help us to refine, and perhaps even one day design, new compounds of scientific and industrial importance. However, building a sufficiently large quantum computer will be a difficult scientific challenge. As a result, developments that enable these problems to be tackled with fewer quantum resources should be considered important. Driven by this potential utility, quantum computational chemistry is rapidly emerging as an interdisciplinary field requiring knowledge of both quantum computing and computational chemistry. This review provides a comprehensive introduction to both computational chemistry and quantum computing, bridging the current knowledge gap. Major developments in this area are reviewed, with a particular focus on near-term quantum computation. Illustrations of key methods are provided, explicitly demonstrating how to map chemical problems onto a quantum computer, and how to solve them. The review concludes with an outlook on this nascent field.

954 citations